

DOI 10.1515/tmj-2017-0047

Essentially generalized λ -slant Toeplitz operators

Gopal Datt¹ and Neelima Ohri²

¹Department of Mathematics, PGDAV College, University of Delhi, Delhi - 110065, India ²Department of Mathematics, University of Delhi, Delhi - 110007, India E-mail: gopal.d.sati@gmail.com¹, neelimaohri1990@gmail.com²

Abstract

We introduce the notion of an essentially generalized λ -slant Toeplitz operator on the Hilbert space L^2 for a general complex number λ , via the operator equation $\lambda M_z X - X M_{z^k} = K$, K being a compact operator on L^2 and $k \geq 2$ being an integer. We attempt to investigate some of the properties of this operator and also study its counterpart on H^2 .

2010 Mathematics Subject Classification. **47B35**. 47B38 Keywords. Essentially Toeplitz operator, Slant Toeplitz operator, Generalized λ -slant Toeplitz operator.

1 Introduction

The symbols \mathbb{N} , \mathbb{Z} and \mathbb{C} denote the sets of all natural numbers, integers and complex numbers respectively. The Toeplitz operators X on the Hilbert space $L^2(=L^2(\mathbb{T}))$, where \mathbb{T} denotes the unit circle in \mathbb{C}) and on the Hardy space $H^2(=H^2(\mathbb{T}))$ are characterized by the operator equations $M_z X = X M_z$ and $U^* X U = X$ respectively, where M_z denotes the bilateral shift operator on L^2 and U denotes the unilateral forward shift operator on H^2 . The sets $\{e_n\}_{n\in\mathbb{Z}}$ and $\{e_n\}_{n\geq 0}$, where each e_n is a function on \mathbb{T} given by $e_n(z) = z^n$, form orthonormal bases of L^2 and H^2 respectively. S. Sun [12] solved completely the operator equation $U^*XU = \lambda X$, for a general complex number λ and the solutions of this equation were referred to as λ -Toeplitz operators. In the year 1995, M.C. Ho [11] introduced the class of slant Toeplitz operators, which was further generalized to the class of k^{th} -order slant Toeplitz operators [1]. These operators are characterized as the solutions of the operator equation $M_z X = X M_{z^k}$, $k \geq 2$. The study was further extended to the operator equation $\lambda M_z X = X M_{z^k}$, for $\lambda \in \mathbb{C}$ and $k \geq 2$ and the solutions were referred to as generalized λ -slant Toeplitz operators [5].

We refer to [8] and the references therein for basic definitions and properties of the spaces L^2 , H^2 and L^{∞} . We use the symbols \mathcal{K} and $\mathcal{K}(H^2)$ to denote the set of all compact operators on L^2 and H^2 respectively. The symbols $\mathcal{B}(L^2)$ and $\mathcal{B}(H^2)$ denote the sets of all bounded linear operators on L^2 and H^2 respectively.

In a yet another important direction of study, Barría and Halmos [4] brought attention to the essential commutant of the unilateral shift (also referred to as the set of essentially Toeplitz operators). Further, Avendanõ [3] in the year 2002 studied Hankel operators in reference to the Calkin algebra $\mathcal{B}(H^2)/\mathcal{K}(H^2)$, thereby introducing the notion of essentially Hankel operators. The study in this direction is enhanced by introduction of many other classes of operators, like essentially λ -Hankel operators, essentially slant Toeplitz operators, essentially (λ, μ)-Hankel operators etc. (see [2], [6] and [7]).

Inspired by these various variants of Toeplitz operators and their varied applications (see [9], [13]), we are motivated to further extend this study to the class of "Essentially generalized λ -slant Toeplitz operators" on the space L^2 and also to its counterpart on the space H^2 .

2 Operators on L^2

For $k \geq 2$ and a fixed complex number λ , it is known that generalized λ -slant Toeplitz operators on L^2 are characterized as the operators satisfying the operator equation $\lambda M_z X = X M_{z^k}$ (see [5]). In fact, we have

- 1. If X is a solution of $\lambda M_z X = X M_{z^k}$, $|\lambda| \neq 1$, then X = 0.
- 2. For $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, the operator equation $\lambda M_z X = X M_{z^k}$ admits of non-zero solutions and each non-zero solution is of the form $X = D_{\overline{\lambda}} U_{\varphi}$, where $D_{\overline{\lambda}}$ is the composition operator on L^2 defined as $D_{\overline{\lambda}} f(z) = f(\lambda z)$ for all $f \in L^2$ and U_{φ} , $\varphi \in L^{\infty}$ is a k^{th} -order slant Toeplitz operator.

Our focus, in this paper, is to study the class of operators on L^2 satisfying the operator equation $\lambda M_z X - X M_{z^k} \in \mathcal{K}$, for a fixed complex number λ ($\lambda \neq 0$) and $k \geq 2$. We refer to the solutions of this equation as essentially generalized λ -slant Toeplitz operators and denote the set of all essentially generalized λ -slant Toeplitz operators on L^2 by (k, λ) - $ESTO(L^2)$.

In particular for $\lambda = 1$, this set coincides with k- $ESTO(L^2)$, the set of all k^{th} -order essentially slant Toeplitz operators (see [2]) and in addition if k = 2, this set is same as the set $ESTO(L^2)$, the set of all essentially slant Toeplitz operators on L^2 (see [2]).

Some basic properties of the set (k, λ) -ESTO (L^2) are listed below.

1. (k, λ) - $ESTO(L^2) \cap \mathcal{K} = \mathcal{K}$.

2. (k, λ) -ESTO (L^2) is a norm-closed vector subspace of $\mathcal{B}(L^2)$.

It is evident that every generalized λ -slant Toeplitz operator on L^2 belongs to the set (k, λ) -ESTO (L^2) , though the converse is not true, as is justified by the following example.

Example 2.1. For a complex number λ with unit modulus, let T be an operator on L^2 defined as

$$Te_n = \begin{cases} e_1 & \text{if } n = 0\\ \lambda^m e_m & \text{if } n = km - 1 \text{ for some } m \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

Let $D_{\overline{\lambda}}$ be the composition operator on L^2 defined as $D_{\overline{\lambda}}f(z) = f(\lambda z)$ for all $f \in L^2$, W_k be defined on L^2 as

$$W_k e_n = \begin{cases} e_m & \text{if } n = km \text{ for some } m \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

and K be defined on L^2 as

$$Ke_n = \begin{cases} e_1 & \text{if } n = 0\\ 0 & \text{otherwise} \end{cases}$$

Then, it is easy to see that $T = D_{\overline{\lambda}} W_k M_z + K$. Hence,

$$\begin{split} \lambda M_z T - T M_{z^k} &= \lambda (M_z D_{\overline{\lambda}}) W_k M_z - D_{\overline{\lambda}} W_k M_{z^{k+1}} + K_1 \\ &= |\lambda|^2 D_{\overline{\lambda}} (M_z W_k) M_z - D_{\overline{\lambda}} W_k M_{z^{k+1}} + K_1 \\ &= D_{\overline{\lambda}} W_k M_{z^{k+1}} - D_{\overline{\lambda}} W_k M_{z^{k+1}} + K_1 \\ &= K_1, \end{split}$$

where $0 \neq K_1 = \lambda M_z K - K M_{z^k} \in \mathcal{K}$. Therefore, we can conclude that T is an essentially generalized λ -slant Toeplitz operator on L^2 which is not a generalized λ -slant Toeplitz operator.

This ensures that the set of all generalized λ -slant Toeplitz operators on L^2 is contained properly in the set (k, λ) - $ESTO(L^2)$.

Also, one can assert that the set (k, λ) - $ESTO(L^2)$ is a proper superset of \mathcal{K} since T is a noncompact operator on L^2 .

We now try to determine the intersection of two classes of essentially generalized λ -slant Toeplitz operators.

Theorem 2.2. Let λ and μ be complex numbers such that $\lambda \neq \mu$ and $k_1 \neq k_2$ (both are integers, ≥ 2). Then, the intersection of each pair of sets listed below is \mathcal{K} .

1. (k, λ) -ESTO (L^2) and (k, μ) -ESTO (L^2) .

2. (k_1, λ) -ESTO (L^2) and (k_2, μ) -ESTO (L^2) , where $|\lambda| \neq |\mu|$.

Proof. To prove (1), let $T \in (k, \lambda)$ - $ESTO(L^2) \cap (k, \mu)$ - $ESTO(L^2)$. Then $\lambda M_z T - TM_{z^k}$ and $\mu M_z T - TM_{z^k}$ are both compact operators on L^2 . Therefore $(\lambda - \mu)M_z T$ is a compact operator which implies that T is a compact operator since $\lambda \neq \mu$. Hence (k, λ) - $ESTO(L^2) \cap (k, \mu)$ - $ESTO(L^2) \subseteq \mathcal{K}$. The converse inclusion is trivial.

For the proof of (2), since $k_1 \neq k_2$, assume that $k_1 < k_2$ (If $k_1 > k_2$, we obtain the same result by working in a similar manner). Let $T \in (k_1, \lambda)$ - $ESTO(L^2) \cap (k_2, \mu)$ - $ESTO(L^2)$. This implies that the operator $\lambda M_z T \left(M_{z^{k_2-k_1}} - \frac{\mu}{\lambda} I \right)$ is a compact operator on L^2 . Since $|\lambda| \neq |\mu|$ and $\sigma(M_{z^m}) = \mathbb{T}$, for any positive integer m, this implies that T is compact. Converse holds trivially.

Q.E.D.

Corollary 2.3. k-ESTO $(L^2) \cap (k, \lambda)$ -ESTO $(L^2) = \mathcal{K}, \lambda \neq 1$.

For $\lambda = 1$, the set (k, λ) - $ESTO(L^2)$ is neither an algebra nor self-adjoint (see [2]). We try to investigate now whether (k, λ) - $ESTO(L^2)$, $\lambda \neq 1$, in general, is an algebra or a self-adjoint set. The following example helps us to ascertain.

Example 2.4. Let $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. Consider the operator T on L^2 defined as $T = D_{\overline{\lambda}} W_k M_z + K$, where $D_{\overline{\lambda}}$, W_k and K are as defined in Example 2.1. It was proved that $T \in (k, \lambda)$ - $ESTO(L^2)$. We claim that $T^2 \notin (k, \lambda)$ - $ESTO(L^2)$, since in order that T^2 lies in this set, the operator $(\lambda M_z T^2 - T^2 M_{z^k})$ must be a compact operator on L^2 . This implies that the operator

$$\left(\lambda M_z \left(D_{\overline{\lambda}} W_k M_z\right)^2 - \left(D_{\overline{\lambda}} W_k M_z\right)^2 M_{z^k}\right)$$

must be a compact operator on L^2 , but we have

$$\left(\lambda M_z \left(D_{\overline{\lambda}} W_k M_z\right)^2 - \left(D_{\overline{\lambda}} W_k M_z\right)^2 M_{z^k}\right) e_n = \left\{ \begin{aligned} \lambda^{p(k+1)} e_{p+1} & \text{if } n = k^2 p - k - 1 \text{ for some } p \in \mathbb{Z} \\ -\lambda^{p(k+1)-1} e_p & \text{if } n = k^2 p - 2k - 1 \text{ for some } p \in \mathbb{Z} \\ 0 & \text{otherwise} \end{aligned} \right.$$

Q.E.D.

which contradicts the compactness of this operator. Thus, the set (k, λ) - $ESTO(L^2)$, $|\lambda| = 1$ is not an algebra.

Further, the set is not self-adjoint since $T^* \notin (k, \lambda)$ - $ESTO(L^2)$. We have $T^* = M_{\overline{z}}W_k^*D_\lambda + K^*$ and simple computations yield that $(\lambda M_z(M_{\overline{z}}W_k^*D_\lambda) - (M_{\overline{z}}W_k^*D_\lambda)M_{z^k})e_n = \overline{\lambda}^{n-1}e_{kn} - \overline{\lambda}^{n+k}e_{kn+k^2-1}$ for each $n \in \mathbb{Z}$. This helps to provide that $(\lambda M_z T^* - T^*M_{z^k})$ is a non-compact operator on L^2 .

We now attempt to investigate the condition which ensures that the product of two essentially generalized λ -slant Toeplitz operators is again an essentially generalized λ -slant Toeplitz operator.

Theorem 2.5. If $T_1, T_2 \in (k, \lambda)$ - $ESTO(L^2)$, then $T_1T_2 \in (k, \lambda)$ - $ESTO(L^2)$ if and only if $T_1M_{z^k}T_2 - \lambda T_1M_zT_2 \in \mathcal{K}$.

Proof. Let $T_1, T_2 \in (k, \lambda)$ -ESTO (L^2) . Then,

$$\lambda M_z \left(T_1 T_2 \right) - (T_1 T_2) M_{z^k} = (T_1 M_{z^k} T_2 - T_1 T_2 M_{z^k}) (mod \ \mathcal{K}) = (T_1 M_{z^k} T_2 - \lambda T_1 M_z T_2) (mod \ \mathcal{K}).$$

Hence the result.

Once we put $\lambda = 1$, we can draw the conclusion that the product of two k^{th} -order essentially slant Toeplitz operators is again a k^{th} -order essentially slant Toeplitz operator if and only if $T_1 M_{z^k} T_2 = T_1 M_z T_2 (mod \ \mathcal{K})$, which is also proved in [2].

For a natural number p > 1, let n(p) denotes the number of partitions of p as a sum of two natural numbers. Then, for each $1 \le i \le n(p)$, we have a partition of p, say, $p = m_i + n_i$; $m_i, n_i \in \mathbb{N}$. The following theorem now follows without any extra efforts.

Theorem 2.6. Let $T \in (k, \lambda)$ - $ESTO(L^2)$ and $p \in \mathbb{N}$, p > 1. If $T^{m_i}, T^{n_i} \in (k, \lambda)$ - $ESTO(L^2)$ and $p = m_i + n_i$; $m_i, n_i \in \mathbb{N}$ for $1 \le i \le n(p)$, then the following are equivalent.

- 1. $T^p \in (k, \lambda)$ - $ESTO(L^2)$.
- 2. $T^{m_i}M_{z^k}T^{n_i} = \lambda T^{m_i}M_zT^{n_i} (mod \ \mathcal{K}).$
- 3. $T^{n_i}M_{z^k}T^{m_i} = \lambda T^{n_i}M_zT^{m_i} (mod \ \mathcal{K}).$

Making use of the fact that for $\varphi, \psi \in L^{\infty}$, $M_{\varphi}M_{\psi} = M_{\varphi\psi}$ and using recursively the definition of an essentially generalized λ -slant Toeplitz operator, we obtain the following theorem.

Theorem 2.7. Let k_1, k_2 (both ≥ 2) be integers and λ be a complex number. If $T_1 \in (k_1, \lambda)$ - $ESTO(L^2)$ and $T_2 \in (k_2, \lambda)$ - $ESTO(L^2)$, then the following are equivalent.

- 1. $T_1T_2 \in (k_1k_2, \lambda)$ -ESTO(L^2).
- 2. $(1 \lambda^{k_1}) T_1 M_{z^{k_1}} T_2 \in \mathcal{K}.$

In addition, if $\lambda \neq 0$, then (1) and (2) are equivalent to the condition $(1 - \lambda^{k_1}) T_1 T_2 M_{z^{k_1 k_2}} \in \mathcal{K}$.

Some immediate observations from the above theorem are:

(i) If λ is a k_1^{th} -root of unity, then the product T_1T_2 of the operators $T_1 \in (k_1, \lambda)$ - $ESTO(L^2)$ and $T_2 \in (k_2, \lambda)$ - $ESTO(L^2)$ is an operator in the set (k_1k_2, λ) - $ESTO(L^2)$.

(ii) The product of a k_1^{th} -order essentially slant Toeplitz operator and a k_2^{th} -order essentially slant Toeplitz operator is an essentially slant Toeplitz operator of $(k_1k_2)^{th}$ -order.

Let us try to illustrate observation (i) in light of the following example. Let λ be a third root of unity i.e. λ is either 1, ω or ω^2 , where $\omega = \frac{-1+\sqrt{3}i}{2}$. Consider the operators T_1 and T_2 on L^2 defined as $T_1 = D_{\overline{\lambda}} W_3 M_z + K$ and $T_2 = D_{\overline{\lambda}} W M_z + K$, where $D_{\overline{\lambda}}$, W_3 , $W(=W_2)$ and K are as defined in Example 2.1. Then, it is easy to see that $T_1 \in (3, \lambda)$ - $ESTO(L^2)$ and $T_2 \in (2, \lambda)$ - $ESTO(L^2)$. Now, the operators T_1T_2 and T_2T_1 are given as

$$T_1 T_2 e_n = \begin{cases} e_1 & \text{if } n = -1\\ \lambda^{m-1} e_m & \text{if } n = 6m-3 \text{ for some } m \in \mathbb{Z}\\ 0 & \text{otherwise} \end{cases}$$

and

$$T_2 T_1 e_n = \begin{cases} \lambda e_1 & \text{if } n = 0\\ \lambda^2 e_m & \text{if } n = 6\text{m-4 for some } m \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

The matrix representation of the operator T_1T_2 w.r.t orthonormal basis $\{e_n\}_{n\in\mathbb{Z}}$ is given as follows

Г	-										-	1
		÷	÷	÷	÷	:	÷	÷	÷	÷		
		0	0	0	0	ø	0	0	0	0		
		A	0	0	0	ø	0	0	0	0		
		-0-	-A	-0-	-0-	-0-	-0-	-0-	-0-	-0-		,
		0	0	0	1	Ø	0	0	A	0		
		0	0	0	0	0	0	0	0	A		
	-	÷	÷	÷	÷	:	÷	÷	÷	÷	-	

where A is a (3 x 13) matrix with all columns having zero entries except the first, seventh and thirteenth columns, which are $(1, 0, 0)^t$, $(0, \lambda, 0)^t$ and $(0, 0, \lambda^2)^t$ respectively. Here, $(\cdot)^t$ denotes the transpose of matrix (\cdot) .

Similarly, one can also obtain the matrix representation of the operator T_2T_1 . Using Theorem 2.7, we conclude that both T_1T_2 and T_2T_1 belong to the set $(6, \lambda)$ - $ESTO(L^2)$.

The following theorem provides a sufficient condition so that product of any two bounded operators on L^2 lies in the set (k, λ) - $ESTO(L^2)$.

Theorem 2.8. Let $T_1, T_2 \in \mathcal{B}(L^2)$, then $T_1T_2 \in (k, \lambda)$ - $ESTO(L^2)$ if any one of the following conditions holds.

1. T_1 is in essential commutant of M_z and $T_2 \in (k, \lambda)$ - $ESTO(L^2)$.

2. $T_1 \in (k, \lambda)$ -ESTO(L^2) and T_2 is in essential commutant of M_{z^k} .

Proof. Let $T_1, T_2 \in \mathcal{B}(L^2)$ such that $T_1M_z - M_zT_1 \in \mathcal{K}$. In this case, $(\lambda M_z (T_1T_2) - (T_1T_2) M_{z^k}) = (\lambda M_zT_1T_2 - \lambda T_1M_zT_2) \pmod{\mathcal{K}} = (\lambda M_zT_1T_2 - \lambda M_zT_1T_2) \pmod{\mathcal{K}} = 0 \pmod{\mathcal{K}}$. Hence, $T_1T_2 \in (k, \lambda)$ -ESTO(L^2). Similarly, we can prove the result when condition (2) holds. Q.E.D.

Remark 2.9. If M_{φ} is a multiplication operator induced by $\varphi \in L^{\infty}$ and $T \in (k, \lambda)$ - $ESTO(L^2)$, then $M_{\varphi}T$ and TM_{φ} both belong to (k, λ) - $ESTO(L^2)$.

We end this section by obtaining a necessary condition for an essentially generalized λ -slant Toeplitz operator to be self-adjoint.

Proposition 2.10. If $T, T^* \in (k, \lambda)$ - $ESTO(L^2)$, then $AT^* - T^*A^* \in \mathcal{K}$, where $A = \lambda M_z + M_{\overline{z}^k}$.

Proof. Consider $AT^* - T^*A^* = (\lambda M_z T^* - T^*M_{z^k}) - (\overline{\lambda}T^*M_{\overline{z}} - M_{\overline{z}^k}T^*) = (\lambda M_z T^* - T^*M_{z^k}) - (\lambda M_z T - TM_{z^k})^*$. Hence, if $T, T^* \in (k, \lambda)$ -ESTO(L²), then $AT^* - T^*A^* \in \mathcal{K}$. Q.E.D.

Theorem 2.11. A necessary condition for an essentially generalized λ -slant Toeplitz operator T to be self-adjoint is that the operator $(\lambda M_z + M_{\overline{z}^k})T$ is essentially self-adjoint.

3 Compressions

In [5], the compression of a generalized λ -slant Toeplitz operator to H^2 has been characterized as the solution X of the operator equation $\lambda X = T_{\overline{z}} X T_{z^k}$. We obtain the same characterization following the approach of [10, Problem-194] and using the matrix characterization of a generalized λ -slant Toeplitz operator.

Theorem 3.1. A bounded operator A on H^2 is the compression of a generalized λ -slant Toeplitz operator to H^2 if and only if $\lambda A = T_{\overline{z}}AT_{z^k}$, where $T_{\overline{z}}$ and T_{z^k} are Toeplitz operators on H^2 induced by \overline{z} and z^k respectively.

Proof. Let A be the compression of a generalized λ -slant Toeplitz operator to H^2 . Then, using the matrix characterization of A, we have that for each $i, j \geq 0$, $\lambda \langle Az^j, z^i \rangle = \langle T_{\overline{z}}AT_{z^k}z^j, z^i \rangle$ and hence $\lambda A = T_{\overline{z}}AT_{z^k}$.

Conversely, let A satisfies the given equation. Then retracing back the above steps, we obtain that $\lambda \langle Az^j, z^i \rangle = \langle Az^{j+k}, z^{i+1} \rangle$. For each non–negative integer n, consider the operator A_n on L^2 given by

$$A_n = \frac{1}{\lambda^n} S^{*n} A P S^{kn},$$

where S denotes the bilateral shift on L^2 and P denotes the orthogonal projection of L^2 onto H^2 . Clearly, $||A_n|| \leq ||A||$. For each pair (i,j) of integers, we have $\langle A_n z^j, z^i \rangle = \langle \frac{1}{\lambda^n} AP z^{j+kn}, z^{i+n} \rangle$. Then, for sufficiently large n $(n \geq n_0)$, where n_0 is the least integer such that $j + kn_0, i + n_0 \geq 0$, we have that $|\langle A_n z^j, z^i \rangle| = \langle A_n z^j, z^i \rangle = |\frac{1}{\lambda^{n_0}} \langle A z^{j+kn_0}, z^{i+n_0} \rangle| = \langle A z^{j+kn_0}, z^{i+n_0} \rangle$.

Following the same methods and techniques as in [10], we find a bounded linear operator A_{∞} on L^2 such that $\varphi(f,g) = \langle A_{\infty}f,g \rangle$ for all $f,g \in L^2$, which helps to provide that $\lim_{n \to \infty} \langle A_n f,g \rangle = \langle A_{\infty}f,g \rangle$ for all $f,g \in L^2$. Lastly, it is easy to see that A_{∞} is a generalized λ -slant Toeplitz operator on L^2 and A is its compression to H^2 . For, if $i, j \in \mathbb{Z}$, then

$$\left\langle A_{n}z^{j}, z^{i}\right\rangle = \frac{1}{\lambda}\lim_{n \to \infty} \left\langle \frac{1}{\lambda^{n}} S^{*n} AP S^{kn} z^{j+k}, S^{n} z^{i+1} \right\rangle = \frac{1}{\lambda} \left\langle A_{\infty} z^{j+k}, z^{i+1} \right\rangle$$

and for f, $g \in H^2$, we have $\langle PA_{\infty}f,g \rangle = \langle A_{\infty}f,g \rangle = \lim_{n \to \infty} \langle A_nf,g \rangle = \langle Af,g \rangle$. Hence, we are done.

Since T_z is essentially unitary, the equations $\lambda Y - T_{\overline{z}}YT_{z^k} \in \mathcal{K}(H^2)$ and $\lambda T_z Y - YT_{z^k} \in \mathcal{K}(H^2)$ are equivalent, for any operator Y on H^2 . We shall now define the counterpart of an essentially generalized λ -slant Toeplitz operator on H^2 .

Definition 3.2. An operator Y on the space H^2 is said to be essentially compression of a generalized λ -slant Toeplitz operator to H^2 if it satisfies the operator equation

$$\lambda T_z Y - Y T_{z^k} \in \mathcal{K}(H^2).$$

Let (k, λ) -ESTO (H^2) denote the set of all bounded operators on H^2 which are essentially compression of generalized λ -slant Toeplitz operators to H^2 .

For $\varphi \in L^{\infty}$, let V_{φ} denote the compression of a k^{th} -order slant Toeplitz operator U_{φ} to H^2 . Then, one can readily observe that for each $f \in H^2$, $(T_z W_k) f = (PU_{z^k}) f$. This implies that $(T_z W_k)|_{H^2} = V_{z^k} = W_k T_{z^k}$.

Using this observation, it is easy to see that if T is an operator on H^2 defined as $T = D_{\overline{\lambda}} W_k T_z + K$, where $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, $D_{\overline{\lambda}}$ is the composition operator on H^2 defined as $D_{\overline{\lambda}} f(z) = f(\lambda z)$ for all $f \in H^2$ and K is defined on H^2 as $Ke_0 = e_1$ and $Ke_n = 0$ if $n \ge 1$, then $\lambda T_z T - TT_{z^k} \in \mathcal{K}(H^2)$. In fact, $\lambda T_z T - TT_{z^k}$ is a non-zero compact operator on H^2 . Further, $T^*, T^2 \notin (k, \lambda)$ -ESTO(H^2).

The following conclusions can now easily be drawn.

- 1. $\mathcal{K}(H^2)$ is a proper subset of (k, λ) -ESTO (H^2) .
- 2. (k, λ) -ESTO (H^2) is a proper superset of the set of all compression of generalized λ -slant Toeplitz operators to H^2 .
- 3. The set (k, λ) -ESTO (H^2) is neither self-adjoint nor an algebra.

Utilizing the fact that for any positive integer m, $\sigma(T_{z^m}) = \mathbb{D}$, where \mathbb{D} denotes the closed unit disc in \mathbb{C} , we have the following.

Proposition 3.3. Let $\lambda, \mu \in \mathbb{C}$ with $\lambda \neq \mu$ and $k_1 \neq k_2$. Then, (k_1, λ) - $ESTO(H^2) \cap (k_2, \mu)$ - $ESTO(H^2) = \mathcal{K}(H^2)$, if either of the following holds.

- 1. $k_1 > k_2$ and $|\lambda| > |\mu|$.
- 2. $k_1 < k_2$ and $|\lambda| < |\mu|$.

Listed below are some of the properties of the set (k, λ) - $ESTO(H^2)$, which can be readily obtained by working on in a similar fashion as in the case of (k, λ) - $ESTO(L^2)$.

- 1. The compression of every generalized λ -slant Toeplitz operator to H^2 belongs to (k, λ) - $ESTO(H^2)$.
- 2. (k, λ) -ESTO $(H^2) \cap \mathcal{K}(H^2) = \mathcal{K}(H^2)$.
- 3. (k, λ) -ESTO (H^2) is a norm-closed vector subspace of $\mathcal{B}(H^2)$.

- 4. For complex numbers $\lambda \neq \mu$, (k, λ) -ESTO $(H^2) \cap (k, \mu)$ -ESTO $(H^2) = \mathcal{K}(H^2)$.
- 5. If $T_1, T_2 \in (k, \lambda)$ - $ESTO(H^2)$, then $T_1T_2 \in (k, \lambda)$ - $ESTO(H^2)$ if and only if $T_1T_{z^k}T_2 \lambda T_1T_zT_2 \in \mathcal{K}(H^2)$.
- 6. For integers k_1 , k_2 (both ≥ 2) and complex number λ , let $T_1 \in (k_1, \lambda)$ - $ESTO(H^2)$, $T_2 \in (k_2, \lambda)$ - $ESTO(H^2)$ and $k = k_1k_2$. Then $T_1T_2 \in (k, \lambda)$ - $ESTO(H^2)$ if and only if $(1 \lambda^{k_1}) T_1T_{z^{k_1}}T_2 \in \mathcal{K}(H^2)$. Further, if $\lambda \neq 0$, then $T_1T_2 \in (k, \lambda)$ - $ESTO(H^2)$ if and only if $(1 \lambda^{k_1}) T_1T_2T_{z^k} \in \mathcal{K}(H^2)$.
- 7. Let $T_1, T_2 \in \mathcal{B}(H^2)$. If T_1 is in essential commutant of T_z and $T_2 \in (k, \lambda)$ - $ESTO(H^2)$ or, $T_1 \in (k, \lambda)$ - $ESTO(H^2)$ and T_2 is in essential commutant of T_{z^k} , then $T_1T_2 \in (k, \lambda)$ - $ESTO(H^2)$
- 8. If $T, T^* \in (k, \lambda)$ -ESTO(H^2), then $AT^* = T^*A^* (mod \ \mathcal{K}(H^2))$, where $A = \lambda T_z + T_{\overline{z}^k}$.
- 9. A necessary condition for an operator $T \in (k, \lambda)$ - $ESTO(H^2)$ to be self-adjoint is that the operator $(\lambda T_z + T_{\overline{z}^k})T$ is essentially self-adjoint.

Next we move on to find if essentially compression of a generalized λ -slant Toeplitz operator to H^2 is an invertible operator. The answer is in negative as is justified in the following theorem.

Theorem 3.4. The set (k, λ) -ESTO (H^2) , $\lambda \neq 0$ doesn't contain any invertible operator.

Proof. Let $T \in (k, \lambda)$ - $ESTO(H^2)$ be a Fredholm operator of index n. Then, $\lambda T_z T = TT_{z^k} + K$, for some compact operator K on H^2 . The index of the operator $\lambda T_z T$ is n-1, while the index of $TT_{z^k} + K$ is n-k. This implies that k = 1 which is a contradiction. Hence the set (k, λ) - $ESTO(H^2)$ contains no Fredholm operator and in particular no invertible operator.

Using the fact that the commutator of a Toeplitz operator T_{φ} , $\varphi \in L^{\infty}$ and T_{z^m} (where m is any positive integer) is a compact operator on H^2 , we obtain the following result (analogous to remark 2.9).

Theorem 3.5. Let $A \in (k, \lambda)$ - $ESTO(H^2)$ and T_{φ} be a Toeplitz operator on H^2 induced by $\varphi \in L^{\infty}$, then $T_{\varphi}A$ and AT_{φ} both belong to the set (k, λ) - $ESTO(H^2)$.

Proof. Let $A \in (k, \lambda)$ -ESTO (H^2) . Consider

$$\lambda T_z(T_{\varphi}A) - (T_{\varphi}A)T_{z^k} = (T_{\varphi}(\lambda T_zA - AT_{z^k})) \pmod{\mathcal{K}(H^2)} = 0 \pmod{\mathcal{K}(H^2)}.$$

This implies that $T_{\varphi}A \in (k, \lambda)$ - $ESTO(H^2)$. Working on similar lines, we can easily prove that AT_{φ} belongs to the set (k, λ) - $ESTO(H^2)$.

Before we proceed further, let us recall the following definitions.

Definition 3.6. (see [4]) A bounded linear operator T on H^2 is essentially Toeplitz if $T_z^*TT_z - T \in \mathcal{K}(H^2)$. The set of all essentially Toeplitz operators is denoted by essToep.

Definition 3.7. (see [7]) A bounded linear operator T on H^2 is essentially λ -Toeplitz if $T_z^*TT_z - \lambda T \in \mathcal{K}(H^2)$. The set of all essentially λ - Toeplitz operators is denoted by essToep_{λ}.

In the following theorem, we describe the products of essentially Toeplitz operators and essentially $\frac{1}{\lambda}$ -Toeplitz operators with the operators in the class (k, λ) - $ESTO(H^2)$. It is interesting to obtain that, in either case, the product turns out to be an operator in the class (k, λ) - $ESTO(H^2)$.

Theorem 3.8. For a complex number λ and integer $k \geq 2$, we have the following.

- 1. (essToep) $((k, \lambda)$ - $ESTO(H^2)) \subseteq (k, \lambda)$ - $ESTO(H^2)$.
- 2. $\left(essToep_{\frac{1}{\lambda}}\right)$ $\left((k,\lambda^2)-ESTO(H^2)\right) \subseteq (k,\lambda)-ESTO(H^2).$

Proof. We just prove (2). Let $T_1 \in \text{essToep}_{\frac{1}{\lambda}}$ and $T_2 \in (k, \lambda^2)$ - $ESTO(H^2)$. Then, $T_zT_1 - \lambda T_1T_z \in \mathcal{K}(H^2)$ and $\lambda^2 T_zT_2 - T_2T_{z^k} \in \mathcal{K}(H^2)$. Hence,

$$\begin{split} \lambda T_z(T_1 T_2) &- (T_1 T_2) T_{z^k} = \lambda^2 T_1 T_z T_2 - T_1 T_2 T_{z^k} \pmod{\mathcal{K}(H^2)} \\ &= T_1(\lambda^2 T_z T_2 - T_2 T_{z^k})) \pmod{\mathcal{K}(H^2)} \\ &= 0 \pmod{\mathcal{K}(H^2)}. \end{split}$$

Therefore, $(essToep_{\frac{1}{2}})$ $((k, \lambda^2)$ - $ESTO(H^2)) \subseteq (k, \lambda)$ - $ESTO(H^2)$.

Corollary 3.9. (essToep) $(k-ESTO(H^2)) \subseteq k-ESTO(H^2)$.

Remark 3.10. It is worth mentioning here that reversing the order of composition of operators T_1 and T_2 in Theorem 3.8 (1) yields no change in the result, i.e. $((k, \lambda) - ESTO(H^2))$ (essToep) $\subseteq (k, \lambda) - ESTO(H^2)$. However, in case (2), we obtain that the product T_2T_1 of the operators $T_2 \in ((k, \lambda^2) - ESTO(H^2))$ and $T_1 \in (essToep_{\frac{1}{\lambda}})$ belongs to the set $(k, \lambda) - ESTO(H^2)$ if and only if λ is a $(k-1)^{th}$ -root of unity or $T_2T_{z^k}T_1 \in \mathcal{K}(H^2)$.

Acknowledgement. The UGC research grant (F.No.8-4(194)/2015(MRP/NRCB)) to the first author and DST-INSPIRE research grant (DST/INSPIRE/03/2014/000442 upgraded to No. DST/AORC-IF/UPGRD/IF140222) to the second author are gratefully acknowledged.

References

- S.C. Arora and R. Batra, Generalized slant Toeplitz operators on H², Math. Nachr. 278, No. 4, 347–355, 2005.
- [2] S.C. Arora and J. Bhola, Essentially slant Toeplitz operators, Banach J. Math. Anal., Iran, 3(2009), No. 2, 1–8.
- [3] Rubén A. Martínez-Avendaño, A generalization of Hankel operators, J. Func. Anal., 190, 2002, 418–446.
- [4] José Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621–630.

Q.E.D.

- [5] Gopal Datt and Ritu Aggarwal, A generalization of λ-slant Toeplitz operators, Tbilisi Mathematics Journal, Vol. 9(1), 221–229, 2016.
- [6] Gopal Datt and Ritu Aggarwal, Essentially (λ, μ) -Hankel operators, Functional Analysis, Approximation and Computation, 6(1), (2014), 35–40.
- [7] Gopal Datt and Ritu Aggarwal, On some generalization of Toeplitz operator via operator equations, General Mathematics, Vol. 21(2), 2013, 57–69.
- [8] Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1952.
- T. Goodman, C. Micchelli and J. Ward, Spectral radius formula for subdivision operators, Recent advances in wavelet analysis, ed. L. Schumaker and G. Webb, Academic Press, 1994, 335–360.
- [10] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
- [11] M.C. Ho, Properties of slant Toeplitz operators, Indiana Univ. Math. J., 45(3), 1996, 843–862.
- [12] S. Sun, On the operator equation $U^*TU = \lambda T$, Kexue Tongbao (English ed.), 29, 1984, 298–299.
- [13] L. Villemoes, Wavelet analysis of refinement equations, SIAMJ Math. Analysis, 25, 1994, 1433–1460.