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Abstract

We introduce the notion of an essentially generalized λ-slant Toeplitz operator on the Hilbert
space L2 for a general complex number λ, via the operator equation λMzX −XMzk = K, K
being a compact operator on L2 and k(≥ 2) being an integer. We attempt to investigate some
of the properties of this operator and also study its counterpart on H2.
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1 Introduction

The symbols N, Z and C denote the sets of all natural numbers, integers and complex numbers
respectively. The Toeplitz operators X on the Hilbert space L2(= L2(T), where T denotes the unit
circle in C) and on the Hardy space H2(= H2(T)) are characterized by the operator equations
MzX = XMz and U∗XU = X respectively, where Mz denotes the bilateral shift operator on L2

and U denotes the unilateral forward shift operator on H2. The sets {en}n∈Z and {en}n≥0, where
each en is a function on T given by en(z) = zn, form orthonormal bases of L2 and H2 respectively.
S. Sun [12] solved completely the operator equation U∗XU = λX, for a general complex number λ
and the solutions of this equation were referred to as λ–Toeplitz operators. In the year 1995, M.C.
Ho [11] introduced the class of slant Toeplitz operators, which was further generalized to the class
of kth-order slant Toeplitz operators [1]. These operators are characterized as the solutions of the
operator equation MzX = XMzk , k ≥ 2. The study was further extended to the operator equation
λMzX = XMzk , for λ ∈ C and k ≥ 2 and the solutions were referred to as generalized λ-slant
Toeplitz operators [5].

We refer to [8] and the references therein for basic definitions and properties of the spaces L2,
H2 and L∞. We use the symbols K and K(H2) to denote the set of all compact operators on L2

and H2 respectively. The symbols B(L2) and B(H2) denote the sets of all bounded linear operators
on L2 and H2 respectively.

In a yet another important direction of study, Barŕıa and Halmos [4] brought attention to
the essential commutant of the unilateral shift (also referred to as the set of essentially Toeplitz
operators). Further, Avendanõ [3] in the year 2002 studied Hankel operators in reference to the
Calkin algebra B(H2)/K(H2), thereby introducing the notion of essentially Hankel operators. The
study in this direction is enhanced by introduction of many other classes of operators, like essentially
λ-Hankel operators, essentially slant Toeplitz operators, essentially (λ, µ)-Hankel operators etc. (see
[2], [6] and [7]).

Inspired by these various variants of Toeplitz operators and their varied applications (see [9],
[13]), we are motivated to further extend this study to the class of “Essentially generalized λ-slant
Toeplitz operators” on the space L2 and also to its counterpart on the space H2.
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2 Operators on L2

For k ≥ 2 and a fixed complex number λ, it is known that generalized λ-slant Toeplitz operators
on L2 are characterized as the operators satisfying the operator equation λMzX = XMzk (see [5]).
In fact, we have

1. If X is a solution of λMzX = XMzk , |λ| 6= 1, then X = 0.

2. For λ ∈ C with |λ| = 1, the operator equation λMzX = XMzk admits of non-zero solutions
and each non-zero solution is of the form X = DλUϕ, where Dλ is the composition operator
on L2 defined as Dλf(z) = f(λz) for all f ∈ L2 and Uϕ, ϕ ∈ L∞ is a kth-order slant Toeplitz
operator.

Our focus, in this paper, is to study the class of operators on L2 satisfying the operator equation
λMzX −XMzk ∈ K, for a fixed complex number λ (λ 6= 0) and k ≥ 2. We refer to the solutions of
this equation as essentially generalized λ-slant Toeplitz operators and denote the set of all essentially
generalized λ-slant Toeplitz operators on L2 by (k, λ)-ESTO(L2).

In particular for λ = 1, this set coincides with k-ESTO(L2), the set of all kth-order essentially
slant Toeplitz operators (see [2]) and in addition if k = 2, this set is same as the set ESTO(L2),
the set of all essentially slant Toeplitz operators on L2 (see [2]).

Some basic properties of the set (k, λ)-ESTO(L2) are listed below.

1. (k, λ)-ESTO(L2) ∩ K = K.

2. (k, λ)-ESTO(L2) is a norm-closed vector subspace of B(L2).

It is evident that every generalized λ-slant Toeplitz operator on L2 belongs to the set (k, λ)-
ESTO(L2), though the converse is not true, as is justified by the following example.

Example 2.1. For a complex number λ with unit modulus, let T be an operator on L2 defined as

Ten =


e1 if n = 0

λmem if n = km− 1 for some m ∈ Z
0 otherwise

.

Let Dλ be the composition operator on L2 defined as Dλf(z) = f(λz) for all f ∈ L2, Wk be
defined on L2 as

Wken =

{
em if n = km for some m ∈ Z
0 otherwise

and K be defined on L2 as

Ken =

{
e1 if n = 0

0 otherwise
.

Then, it is easy to see that T = DλWkMz +K. Hence,

λMzT − TMzk = λ(MzDλ)WkMz −DλWkMzk+1 +K1

= |λ|2Dλ(MzWk)Mz −DλWkMzk+1 +K1

= DλWkMzk+1 −DλWkMzk+1 +K1

= K1,
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Essentially generalized λ-slant Toeplitz operators 65

where 0 6= K1 = λMzK − KMzk ∈ K. Therefore, we can conclude that T is an essentially
generalized λ-slant Toeplitz operator on L2 which is not a generalized λ-slant Toeplitz operator.

This ensures that the set of all generalized λ-slant Toeplitz operators on L2 is contained properly
in the set (k, λ)-ESTO(L2).

Also, one can assert that the set (k, λ)-ESTO(L2) is a proper superset of K since T is a non-
compact operator on L2.

We now try to determine the intersection of two classes of essentially generalized λ-slant Toeplitz
operators.

Theorem 2.2. Let λ and µ be complex numbers such that λ 6= µ and k1 6= k2 (both are integers,
≥ 2). Then, the intersection of each pair of sets listed below is K.

1. (k, λ)-ESTO(L2) and (k, µ)-ESTO(L2).

2. (k1, λ)-ESTO(L2) and (k2, µ)-ESTO(L2), where |λ| 6= |µ|.

Proof. To prove (1), let T ∈ (k, λ)-ESTO(L2) ∩ (k, µ)-ESTO(L2). Then λMzT − TMzk and
µMzT−TMzk are both compact operators on L2. Therefore (λ−µ)MzT is a compact operator which
implies that T is a compact operator since λ 6= µ. Hence (k, λ)-ESTO(L2) ∩ (k, µ)-ESTO(L2)
⊆ K. The converse inclusion is trivial.
For the proof of (2), since k1 6= k2, assume that k1 < k2 (If k1 > k2, we obtain the same result by
working in a similar manner). Let T ∈ (k1, λ)-ESTO(L2) ∩ (k2, µ)-ESTO(L2). This implies that
the operator λMzT

(
Mzk2−k1 − µ

λI
)

is a compact operator on L2. Since |λ| 6= |µ| and σ(Mzm) = T,
for any positive integer m, this implies that T is compact. Converse holds trivially.

q.e.d.

Corollary 2.3. k-ESTO(L2) ∩ (k, λ)-ESTO(L2) = K, λ 6= 1.

For λ = 1, the set (k, λ)-ESTO(L2) is neither an algebra nor self–adjoint (see [2]). We try to
investigate now whether (k, λ)-ESTO(L2), λ 6= 1, in general, is an algebra or a self–adjoint set.
The following example helps us to ascertain.

Example 2.4. Let λ ∈ C with |λ| = 1. Consider the operator T on L2 defined as T = DλWkMz +
K, where Dλ, Wk and K are as defined in Example 2.1. It was proved that T ∈ (k, λ)-ESTO(L2).
We claim that T 2 /∈ (k, λ)-ESTO(L2), since in order that T 2 lies in this set, the operator(
λMzT

2 − T 2Mzk
)

must be a compact operator on L2. This implies that the operator(
λMz

(
DλWkMz

)2 − (DλWkMz

)2
Mzk

)
must be a compact operator on L2, but we have(

λMz

(
DλWkMz

)2 − (DλWkMz

)2
Mzk

)
en =

λp(k+1)ep+1 if n = k2p− k − 1 for some p ∈ Z
−λp(k+1)−1ep if n = k2p− 2k − 1 for some p ∈ Z
0 otherwise

,
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which contradicts the compactness of this operator. Thus, the set (k, λ)-ESTO(L2), |λ| = 1 is
not an algebra.

Further, the set is not self–adjoint since T ∗ /∈ (k, λ)-ESTO(L2). We have T ∗ = MzWk
∗Dλ +

K∗ and simple computations yield that (λMz(MzWk
∗Dλ)− (MzWk

∗Dλ)Mzk) en = λ
n−1

ekn −
λ
n+k

ekn+k2−1 for each n ∈ Z. This helps to provide that (λMzT
∗ − T ∗Mzk) is a non–compact

operator on L2.

We now attempt to investigate the condition which ensures that the product of two essentially
generalized λ-slant Toeplitz operators is again an essentially generalized λ-slant Toeplitz operator.

Theorem 2.5. If T1, T2 ∈ (k, λ)-ESTO(L2), then T1T2 ∈ (k, λ)-ESTO (L2) if and only if T1MzkT2−
λT1MzT2 ∈ K.

Proof. Let T1, T2 ∈ (k, λ)-ESTO(L2). Then,

λMz (T1T2)− (T1T2)Mzk = (T1MzkT2 − T1T2Mzk)(mod K) = (T1MzkT2 − λT1MzT2)(mod K).

Hence the result. q.e.d.

Once we put λ = 1, we can draw the conclusion that the product of two kth-order essentially slant
Toeplitz operators is again a kth-order essentially slant Toeplitz operator if and only if T1MzkT2 =
T1MzT2(mod K), which is also proved in [2].

For a natural number p > 1, let n(p) denotes the number of partitions of p as a sum of two
natural numbers. Then, for each 1 ≤ i ≤ n(p), we have a partition of p, say, p = mi+ni; mi, ni ∈ N.
The following theorem now follows without any extra efforts.

Theorem 2.6. Let T ∈ (k, λ)-ESTO(L2) and p ∈ N, p > 1. If Tmi , Tni ∈ (k, λ)-ESTO(L2) and
p = mi + ni; mi, ni ∈ N for 1 ≤ i ≤ n(p), then the following are equivalent.

1. T p ∈ (k, λ)-ESTO(L2).

2. TmiMzkT
ni = λTmiMzT

ni(mod K).

3. TniMzkT
mi = λTniMzT

mi(mod K).

Making use of the fact that for ϕ,ψ ∈ L∞, MϕMψ = Mϕψ and using recursively the definition
of an essentially generalized λ-slant Toeplitz operator, we obtain the following theorem.

Theorem 2.7. Let k1, k2 (both ≥ 2) be integers and λ be a complex number. If T1 ∈ (k1, λ)-
ESTO(L2) and T2 ∈ (k2, λ)-ESTO(L2), then the following are equivalent.

1. T1T2 ∈ (k1k2, λ)-ESTO(L2).

2.
(
1− λk1

)
T1Mzk1T2 ∈ K.

In addition, if λ 6= 0, then (1) and (2) are equivalent to the condition
(
1− λk1

)
T1T2Mzk1k2 ∈ K.
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Essentially generalized λ-slant Toeplitz operators 67

Some immediate observations from the above theorem are:
(i) If λ is a kth1 -root of unity, then the product T1T2 of the operators T1 ∈ (k1, λ)-ESTO(L2)

and T2 ∈ (k2, λ)-ESTO(L2) is an operator in the set (k1k2, λ)-ESTO(L2).
(ii) The product of a kth1 -order essentially slant Toeplitz operator and a kth2 -order essentially

slant Toeplitz operator is an essentially slant Toeplitz operator of (k1k2)th-order.
Let us try to illustrate observation (i) in light of the following example. Let λ be a third root of

unity i.e. λ is either 1, ω or ω2, where ω = −1+
√
3i

2 . Consider the operators T1 and T2 on L2 defined
as T1 = DλW3Mz +K and T2 = DλWMz +K, where Dλ, W3, W (= W2) and K are as defined in
Example 2.1. Then, it is easy to see that T1 ∈ (3, λ)-ESTO(L2) and T2 ∈ (2, λ)-ESTO(L2). Now,
the operators T1T2 and T2T1 are given as

T1T2en =


e1 if n = −1

λm−1em if n=6m-3 for some m ∈ Z
0 otherwise

and

T2T1en =


λe1 if n = 0

λ2em if n=6m-4 for some m ∈ Z
0 otherwise

.

The matrix representation of the operator T1T2 w.r.t orthonormal basis {en}n∈Z is given as
follows 

...
...

...
...

...
...

...
...

...

· · · 0 0 0 0 0 0 0 0 0 · · ·
· · · A 0 0 0 0 0 0 0 0 · · ·
· · · 0 A 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 0 A 0 · · ·
· · · 0 0 0 0 0 0 0 0 A · · ·

...
...

...
...

...
...

...
...

...


,

where A is a (3 x 13) matrix with all columns having zero entries except the first, seventh and
thirteenth columns, which are (1, 0, 0)t, (0, λ, 0)t and (0, 0, λ2)t respectively. Here, (·)t denotes the
transpose of matrix (·).

Similarly, one can also obtain the matrix representation of the operator T2T1. Using Theorem
2.7, we conclude that both T1T2 and T2T1 belong to the set (6, λ)-ESTO(L2).

The following theorem provides a sufficient condition so that product of any two bounded
operators on L2 lies in the set (k, λ)-ESTO(L2).

Theorem 2.8. Let T1, T2 ∈ B(L2), then T1T2 ∈ (k, λ)-ESTO(L2) if any one of the following
conditions holds.

1. T1 is in essential commutant of Mz and T2 ∈ (k, λ)-ESTO(L2).
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2. T1 ∈ (k, λ)-ESTO(L2) and T2 is in essential commutant of Mzk .

Proof. Let T1, T2 ∈ B(L2) such that T1Mz−MzT1 ∈ K. In this case, (λMz (T1T2)− (T1T2)Mzk) =
(λMzT1T2 − λT1MzT2) (mod K) = (λMzT1T2 − λMzT1T2) (mod K) = 0(mod K). Hence, T1T2 ∈
(k, λ)-ESTO(L2). Similarly, we can prove the result when condition (2) holds. q.e.d.

Remark 2.9. If Mϕ is a multiplication operator induced by ϕ ∈ L∞ and T ∈ (k, λ)-ESTO(L2),
then MϕT and TMϕ both belong to (k, λ)-ESTO(L2).

We end this section by obtaining a necessary condition for an essentially generalized λ-slant
Toeplitz operator to be self–adjoint.

Proposition 2.10. If T, T ∗ ∈ (k, λ)-ESTO(L2), then AT ∗ − T ∗A∗ ∈ K, where A = λMz +Mzk .

Proof. Consider AT ∗ − T ∗A∗ = (λMzT
∗ − T ∗Mzk) − (λT ∗Mz −MzkT

∗) = (λMzT
∗ − T ∗Mzk) −

(λMzT − TMzk)∗. Hence, if T, T ∗ ∈ (k, λ)-ESTO(L2), then AT ∗ − T ∗A∗ ∈ K. q.e.d.

Theorem 2.11. A necessary condition for an essentially generalized λ-slant Toeplitz operator T
to be self–adjoint is that the operator (λMz +Mzk)T is essentially self–adjoint.

3 Compressions

In [5], the compression of a generalized λ-slant Toeplitz operator to H2 has been characterized
as the solution X of the operator equation λX = TzXTzk . We obtain the same characterization
following the approach of [10, Problem-194] and using the matrix characterization of a generalized
λ-slant Toeplitz operator.

Theorem 3.1. A bounded operator A on H2 is the compression of a generalized λ-slant Toeplitz
operator to H2 if and only if λA = TzATzk , where Tz and Tzk are Toeplitz operators on H2 induced
by z and zk respectively.

Proof. Let A be the compression of a generalized λ-slant Toeplitz operator to H2. Then, using the
matrix characterization of A, we have that for each i, j ≥ 0, λ

〈
Azj , zi

〉
=
〈
TzATzkz

j , zi
〉

and hence
λA = TzATzk .

Conversely, let A satisfies the given equation. Then retracing back the above steps, we obtain
that λ

〈
Azj , zi

〉
=
〈
Azj+k, zi+1

〉
. For each non–negative integer n, consider the operator An on L2

given by

An =
1

λn
S∗nAPSkn,

where S denotes the bilateral shift on L2 and P denotes the orthogonal projection of L2 onto H2

. Clearly, ||An|| ≤ ||A||. For each pair (i,j) of integers, we have
〈
Anz

j , zi
〉

=
〈

1
λnAPz

j+kn, zi+n
〉
.

Then, for sufficiently large n (n ≥ n0, where n0 is the least integer such that j + kn0, i+ n0 ≥ 0),
we have that |

〈
Anz

j , zi
〉
| =

〈
Anz

j , zi
〉

= | 1
λn0

〈
Azj+kn0 , zi+n0

〉
| =

〈
Azj+kn0 , zi+n0

〉
.

Following the same methods and techniques as in [10], we find a bounded linear operator A∞
on L2 such that ϕ(f, g) =

〈
A∞f, g

〉
for all f, g ∈ L2, which helps to provide that lim

n→∞

〈
Anf, g

〉
=〈

A∞f, g
〉

for all f, g ∈ L2. Lastly, it is easy to see that A∞ is a generalized λ-slant Toeplitz operator
on L2 and A is its compression to H2. For, if i, j ∈ Z, then〈

Anz
j , zi

〉
=

1

λ
lim
n→∞

〈 1

λn
S∗nAPSknzj+k, Snzi+1

〉
=

1

λ

〈
A∞z

j+k, zi+1
〉
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Essentially generalized λ-slant Toeplitz operators 69

and for f, g ∈ H2, we have
〈
PA∞f, g

〉
=
〈
A∞f, g

〉
= lim

n→∞

〈
Anf, g

〉
=
〈
Af, g

〉
. Hence, we are

done. q.e.d.

Since Tz is essentially unitary, the equations λY −TzY Tzk ∈ K(H2) and λTzY −Y Tzk ∈ K(H2)
are equivalent, for any operator Y on H2. We shall now define the counterpart of an essentially
generalized λ-slant Toeplitz operator on H2.

Definition 3.2. An operator Y on the space H2 is said to be essentially compression of a gener-
alized λ-slant Toeplitz operator to H2 if it satisfies the operator equation

λTzY − Y Tzk ∈ K(H2).

Let (k, λ)-ESTO(H2) denote the set of all bounded operators on H2 which are essentially
compression of generalized λ-slant Toeplitz operators to H2.

For ϕ ∈ L∞, let Vϕ denote the compression of a kth-order slant Toeplitz operator Uϕ to H2.
Then, one can readily observe that for each f ∈ H2, (TzWk) f = (PUzk) f . This implies that
(TzWk) |H2 = Vzk = WkTzk .

Using this observation, it is easy to see that if T is an operator on H2 defined as T = DλWkTz+
K, where λ ∈ C with |λ| = 1, Dλ is the composition operator on H2 defined as Dλf(z) = f(λz) for
all f ∈ H2 and K is defined on H2 as Ke0 = e1 and Ken = 0 if n ≥ 1, then λTzT −TTzk ∈ K(H2).
In fact, λTzT − TTzk is a non–zero compact operator on H2. Further, T ∗, T 2 /∈ (k, λ)-ESTO(H2).

The following conclusions can now easily be drawn.

1. K(H2) is a proper subset of (k, λ)-ESTO(H2).

2. (k, λ)-ESTO(H2) is a proper superset of the set of all compression of generalized λ-slant
Toeplitz operators to H2.

3. The set (k, λ)-ESTO(H2) is neither self–adjoint nor an algebra.

Utilizing the fact that for any positive integer m, σ(Tzm) = D, where D denotes the closed unit
disc in C, we have the following.

Proposition 3.3. Let λ, µ ∈ C with λ 6= µ and k1 6= k2. Then, (k1, λ)-ESTO(H2) ∩ (k2, µ)-
ESTO(H2) = K(H2), if either of the following holds.

1. k1 > k2 and |λ| > |µ|.

2. k1 < k2 and |λ| < |µ|.

Listed below are some of the properties of the set (k, λ)-ESTO(H2), which can be readily
obtained by working on in a similar fashion as in the case of (k, λ)-ESTO(L2).

1. The compression of every generalized λ-slant Toeplitz operator to H2 belongs to (k, λ)-
ESTO(H2).

2. (k, λ)-ESTO(H2) ∩ K(H2) = K(H2).

3. (k, λ)-ESTO(H2) is a norm-closed vector subspace of B(H2).
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4. For complex numbers λ 6= µ, (k, λ)-ESTO(H2) ∩ (k, µ)-ESTO (H2) = K(H2).

5. If T1, T2 ∈ (k, λ)-ESTO(H2), then T1T2 ∈ (k, λ)-ESTO(H2) if and only if T1TzkT2 −
λT1TzT2 ∈ K(H2).

6. For integers k1, k2 (both ≥ 2) and complex number λ, let T1 ∈ (k1, λ)-ESTO(H2), T2 ∈
(k2, λ)-ESTO(H2) and k = k1k2. Then T1T2 ∈ (k, λ)-ESTO(H2) if and only if(
1− λk1

)
T1Tzk1T2 ∈ K(H2). Further, if λ 6= 0, then T1T2 ∈ (k, λ)-ESTO(H2) if and only if(

1− λk1
)
T1T2Tzk ∈ K(H2).

7. Let T1, T2 ∈ B(H2). If T1 is in essential commutant of Tz and T2 ∈ (k, λ)-ESTO(H2) or, T1 ∈
(k, λ)-ESTO(H2) and T2 is in essential commutant of Tzk , then T1T2 ∈ (k, λ)-ESTO(H2)

8. If T, T ∗ ∈ (k, λ)-ESTO(H2), then AT ∗ = T ∗A∗(mod K(H2)), where A = λTz + Tzk .

9. A necessary condition for an operator T ∈ (k, λ)-ESTO(H2) to be self–adjoint is that the
operator (λTz + Tzk)T is essentially self–adjoint.

Next we move on to find if essentially compression of a generalized λ-slant Toeplitz operator to
H2 is an invertible operator. The answer is in negative as is justified in the following theorem.

Theorem 3.4. The set (k, λ)-ESTO(H2), λ 6= 0 doesn’t contain any invertible operator.

Proof. Let T ∈ (k, λ)-ESTO(H2) be a Fredholm operator of index n. Then, λTzT = TTzk + K,
for some compact operator K on H2. The index of the operator λTzT is n-1, while the index of
TTzk +K is n-k. This implies that k = 1 which is a contradiction. Hence the set (k, λ)-ESTO(H2)
contains no Fredholm operator and in particular no invertible operator. q.e.d.

Using the fact that the commutator of a Toeplitz operator Tϕ, ϕ ∈ L∞ and Tzm (where m is
any positive integer) is a compact operator on H2, we obtain the following result (analogous to
remark 2.9).

Theorem 3.5. Let A ∈ (k, λ)-ESTO(H2) and Tϕ be a Toeplitz operator on H2 induced by
ϕ ∈ L∞, then TϕA and ATϕ both belong to the set (k, λ)-ESTO(H2).

Proof. Let A ∈ (k, λ)-ESTO(H2). Consider

λTz(TϕA)− (TϕA)Tzk = (Tϕ(λTzA−ATzk)) (mod K(H2)) = 0 (mod K(H2)).

This implies that TϕA ∈ (k, λ)-ESTO(H2). Working on similar lines, we can easily prove that ATϕ
belongs to the set (k, λ)-ESTO(H2). q.e.d.

Before we proceed further, let us recall the following definitions.

Definition 3.6. (see [4]) A bounded linear operator T on H2 is essentially Toeplitz if T ∗z TTz−T ∈
K(H2). The set of all essentially Toeplitz operators is denoted by essToep.

Definition 3.7. (see [7]) A bounded linear operator T on H2 is essentially λ-Toeplitz if T ∗z TTz −
λT ∈ K(H2). The set of all essentially λ- Toeplitz operators is denoted by essToepλ.
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In the following theorem, we describe the products of essentially Toeplitz operators and essen-
tially 1

λ -Toeplitz operators with the operators in the class (k, λ)-ESTO(H2). It is interesting to
obtain that, in either case, the product turns out to be an operator in the class (k, λ)-ESTO(H2).

Theorem 3.8. For a complex number λ and integer k ≥ 2, we have the following.

1. (essToep)
(
(k, λ)-ESTO(H2)

)
⊆ (k, λ)-ESTO(H2).

2.
(
essToep 1

λ

) (
(k, λ2)-ESTO(H2)

)
⊆ (k, λ)-ESTO(H2).

Proof. We just prove (2). Let T1 ∈ essToep 1
λ

and T2 ∈ (k, λ2)-ESTO(H2). Then, TzT1 − λT1Tz ∈
K(H2) and λ2TzT2 − T2Tzk ∈ K(H2). Hence,

λTz(T1T2)− (T1T2)Tzk = λ2T1TzT2 − T1T2Tzk (mod K(H2))

= T1(λ2TzT2 − T2Tzk)) (mod K(H2))

= 0 (mod K(H2)).

Therefore, (essToep 1
λ

) ((k, λ2)-ESTO(H2)) ⊆ (k, λ)-ESTO(H2). q.e.d.

Corollary 3.9. (essToep)
(
k-ESTO(H2)

)
⊆ k-ESTO(H2).

Remark 3.10. It is worth mentioning here that reversing the order of composition of operators
T1 and T2 in Theorem 3.8 (1) yields no change in the result, i.e.

(
(k, λ)-ESTO(H2)

)
(essToep)

⊆ (k, λ)-ESTO(H2). However, in case (2), we obtain that the product T2T1 of the operators

T2 ∈
(
(k, λ2)-ESTO(H2)

)
and T1 ∈

(
essToep 1

λ

)
belongs to the set (k, λ)-ESTO(H2) if and only

if λ is a (k − 1)th-root of unity or T2TzkT1 ∈ K(H2).
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