Essentially generalized λ-slant Toeplitz operators

Gopal Datt ${ }^{1}$ and Neelima Ohri ${ }^{2}$
${ }^{1}$ Department of Mathematics, PGDAV College, University of Delhi, Delhi - 110065, India
${ }^{2}$ Department of Mathematics, University of Delhi, Delhi - 110007, India
E-mail: gopal.d.sati@gmail.com ${ }^{1}$, neelimaohri1990@gmail.com ${ }^{2}$

Abstract

We introduce the notion of an essentially generalized λ-slant Toeplitz operator on the Hilbert space L^{2} for a general complex number λ, via the operator equation $\lambda M_{z} X-X M_{z^{k}}=K$, K being a compact operator on L^{2} and $k(\geq 2)$ being an integer. We attempt to investigate some of the properties of this operator and also study its counterpart on H^{2}.

2010 Mathematics Subject Classification. 47B35. 47B38
Keywords. Essentially Toeplitz operator, Slant Toeplitz operator, Generalized λ-slant Toeplitz operator.

1 Introduction

The symbols \mathbb{N}, \mathbb{Z} and \mathbb{C} denote the sets of all natural numbers, integers and complex numbers respectively. The Toeplitz operators X on the Hilbert space $L^{2}\left(=L^{2}(\mathbb{T})\right.$, where \mathbb{T} denotes the unit circle in \mathbb{C}) and on the Hardy space $H^{2}\left(=H^{2}(\mathbb{T})\right)$ are characterized by the operator equations $M_{z} X=X M_{z}$ and $U^{*} X U=X$ respectively, where M_{z} denotes the bilateral shift operator on L^{2} and U denotes the unilateral forward shift operator on H^{2}. The sets $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{e_{n}\right\}_{n \geq 0}$, where each e_{n} is a function on \mathbb{T} given by $e_{n}(z)=z^{n}$, form orthonormal bases of L^{2} and H^{2} respectively. S. Sun [12] solved completely the operator equation $U^{*} X U=\lambda X$, for a general complex number λ and the solutions of this equation were referred to as λ-Toeplitz operators. In the year 1995, M.C. Ho [11] introduced the class of slant Toeplitz operators, which was further generalized to the class of $k^{\text {th }}$-order slant Toeplitz operators [1]. These operators are characterized as the solutions of the operator equation $M_{z} X=X M_{z^{k}}, k \geq 2$. The study was further extended to the operator equation $\lambda M_{z} X=X M_{z^{k}}$, for $\lambda \in \mathbb{C}$ and $k \geq 2$ and the solutions were referred to as generalized λ-slant Toeplitz operators [5].

We refer to [8] and the references therein for basic definitions and properties of the spaces L^{2}, H^{2} and L^{∞}. We use the symbols \mathcal{K} and $\mathcal{K}\left(H^{2}\right)$ to denote the set of all compact operators on L^{2} and H^{2} respectively. The symbols $\mathcal{B}\left(L^{2}\right)$ and $\mathcal{B}\left(H^{2}\right)$ denote the sets of all bounded linear operators on L^{2} and H^{2} respectively.

In a yet another important direction of study, Barría and Halmos [4] brought attention to the essential commutant of the unilateral shift (also referred to as the set of essentially Toeplitz operators). Further, Avendanõ [3] in the year 2002 studied Hankel operators in reference to the Calkin algebra $\mathcal{B}\left(H^{2}\right) / \mathcal{K}\left(H^{2}\right)$, thereby introducing the notion of essentially Hankel operators. The study in this direction is enhanced by introduction of many other classes of operators, like essentially λ-Hankel operators, essentially slant Toeplitz operators, essentially (λ, μ)-Hankel operators etc. (see [2], [6] and [7]).

Inspired by these various variants of Toeplitz operators and their varied applications (see [9], [13]), we are motivated to further extend this study to the class of "Essentially generalized λ-slant Toeplitz operators" on the space L^{2} and also to its counterpart on the space H^{2}.

2 Operators on L^{2}

For $k \geq 2$ and a fixed complex number λ, it is known that generalized λ-slant Toeplitz operators on L^{2} are characterized as the operators satisfying the operator equation $\lambda M_{z} X=X M_{z^{k}}$ (see [5]). In fact, we have

1. If X is a solution of $\lambda M_{z} X=X M_{z^{k}},|\lambda| \neq 1$, then $X=0$.
2. For $\lambda \in \mathbb{C}$ with $|\lambda|=1$, the operator equation $\lambda M_{z} X=X M_{z^{k}}$ admits of non-zero solutions and each non-zero solution is of the form $X=D_{\bar{\lambda}} U_{\varphi}$, where $D_{\bar{\lambda}}$ is the composition operator on L^{2} defined as $D_{\bar{\lambda}} f(z)=f(\lambda z)$ for all $f \in L^{2}$ and $U_{\varphi}, \varphi \in L^{\infty}$ is a $k^{t h}$-order slant Toeplitz operator.

Our focus, in this paper, is to study the class of operators on L^{2} satisfying the operator equation $\lambda M_{z} X-X M_{z^{k}} \in \mathcal{K}$, for a fixed complex number $\lambda(\lambda \neq 0)$ and $k \geq 2$. We refer to the solutions of this equation as essentially generalized λ-slant Toeplitz operators and denote the set of all essentially generalized λ-slant Toeplitz operators on L^{2} by $(k, \lambda)-E S T O\left(L^{2}\right)$.

In particular for $\lambda=1$, this set coincides with $k-E S T O\left(L^{2}\right)$, the set of all $k^{t h}$-order essentially slant Toeplitz operators (see [2]) and in addition if $k=2$, this set is same as the set $\operatorname{ESTO}\left(L^{2}\right)$, the set of all essentially slant Toeplitz operators on L^{2} (see [2]).

Some basic properties of the set $(k, \lambda)-E S T O\left(L^{2}\right)$ are listed below.

1. $(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right) \cap \mathcal{K}=\mathcal{K}$.
2. $(k, \lambda)-E S T O\left(L^{2}\right)$ is a norm-closed vector subspace of $\mathcal{B}\left(L^{2}\right)$.

It is evident that every generalized λ-slant Toeplitz operator on L^{2} belongs to the set (k, λ) $\operatorname{ESTO}\left(L^{2}\right)$, though the converse is not true, as is justified by the following example.
Example 2.1. For a complex number λ with unit modulus, let T be an operator on L^{2} defined as

$$
T e_{n}= \begin{cases}e_{1} & \text { if } n=0 \\ \lambda^{m} e_{m} & \text { if } n=k m-1 \text { for some } \mathrm{m} \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Let $D_{\bar{\lambda}}$ be the composition operator on L^{2} defined as $D_{\bar{\lambda}} f(z)=f(\lambda z)$ for all $f \in L^{2}$, W_{k} be defined on L^{2} as

$$
W_{k} e_{n}= \begin{cases}e_{m} & \text { if } n=k m \text { for some } \mathrm{m} \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

and K be defined on L^{2} as

$$
K e_{n}= \begin{cases}e_{1} & \text { if } n=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then, it is easy to see that $T=D_{\bar{\lambda}} W_{k} M_{z}+K$. Hence,

$$
\begin{aligned}
\lambda M_{z} T-T M_{z^{k}} & =\lambda\left(M_{z} D_{\bar{\lambda}}\right) W_{k} M_{z}-D_{\bar{\lambda}} W_{k} M_{z^{k+1}}+K_{1} \\
& =|\lambda|^{2} D_{\bar{\lambda}}\left(M_{z} W_{k}\right) M_{z}-D_{\bar{\lambda}} W_{k} M_{z^{k+1}}+K_{1} \\
& =D_{\bar{\lambda}} W_{k} M_{z^{k+1}}-D_{\bar{\lambda}} W_{k} M_{z^{k+1}}+K_{1} \\
& =K_{1},
\end{aligned}
$$

where $0 \neq K_{1}=\lambda M_{z} K-K M_{z^{k}} \in \mathcal{K}$. Therefore, we can conclude that T is an essentially generalized λ-slant Toeplitz operator on L^{2} which is not a generalized λ-slant Toeplitz operator.

This ensures that the set of all generalized λ-slant Toeplitz operators on L^{2} is contained properly in the set $(k, \lambda)-E S T O\left(L^{2}\right)$.

Also, one can assert that the set $(k, \lambda)-E S T O\left(L^{2}\right)$ is a proper superset of \mathcal{K} since T is a noncompact operator on L^{2}.

We now try to determine the intersection of two classes of essentially generalized λ-slant Toeplitz operators.

Theorem 2.2. Let λ and μ be complex numbers such that $\lambda \neq \mu$ and $k_{1} \neq k_{2}$ (both are integers, ≥ 2). Then, the intersection of each pair of sets listed below is \mathcal{K}.

1. $(k, \lambda)-E S T O\left(L^{2}\right)$ and $(k, \mu)-E S T O\left(L^{2}\right)$.
2. $\left(k_{1}, \lambda\right)-\operatorname{ESTO}\left(L^{2}\right)$ and $\left(k_{2}, \mu\right)-\operatorname{ESTO}\left(L^{2}\right)$, where $|\lambda| \neq|\mu|$.

Proof. To prove (1), let $T \in(k, \lambda)-E S T O\left(L^{2}\right) \cap(k, \mu)-E S T O\left(L^{2}\right)$. Then $\lambda M_{z} T-T M_{z^{k}}$ and $\mu M_{z} T-T M_{z^{k}}$ are both compact operators on L^{2}. Therefore $(\lambda-\mu) M_{z} T$ is a compact operator which implies that T is a compact operator since $\lambda \neq \mu$. Hence $(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right) \cap(k, \mu)-\operatorname{ESTO}\left(L^{2}\right)$ $\subseteq \mathcal{K}$. The converse inclusion is trivial.
For the proof of (2), since $k_{1} \neq k_{2}$, assume that $k_{1}<k_{2}$ (If $k_{1}>k_{2}$, we obtain the same result by working in a similar manner). Let $T \in\left(k_{1}, \lambda\right)-\operatorname{ESTO}\left(L^{2}\right) \cap\left(k_{2}, \mu\right)-E S T O\left(L^{2}\right)$. This implies that the operator $\lambda M_{z} T\left(M_{z^{k_{2}-k_{1}}}-\frac{\mu}{\lambda} I\right)$ is a compact operator on L^{2}. Since $|\lambda| \neq|\mu|$ and $\sigma\left(M_{z^{m}}\right)=\mathbb{T}$, for any positive integer m , this implies that T is compact. Converse holds trivially.

Corollary 2.3. $k-\operatorname{ESTO}\left(L^{2}\right) \cap(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right)=\mathcal{K}, \lambda \neq 1$.
For $\lambda=1$, the set $(k, \lambda)-E S T O\left(L^{2}\right)$ is neither an algebra nor self-adjoint (see [2]). We try to investigate now whether $(k, \lambda)-E S T O\left(L^{2}\right), \lambda \neq 1$, in general, is an algebra or a self-adjoint set. The following example helps us to ascertain.

Example 2.4. Let $\lambda \in \mathbb{C}$ with $|\lambda|=1$. Consider the operator T on L^{2} defined as $T=D_{\bar{\lambda}} W_{k} M_{z}+$ K, where $D_{\bar{\lambda}}, W_{k}$ and K are as defined in Example 2.1. It was proved that $T \in(k, \lambda)-E S T O\left(L^{2}\right)$. We claim that $T^{2} \notin(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right)$, since in order that T^{2} lies in this set, the operator $\left(\lambda M_{z} T^{2}-T^{2} M_{z^{k}}\right)$ must be a compact operator on L^{2}. This implies that the operator

$$
\left(\lambda M_{z}\left(D_{\bar{\lambda}} W_{k} M_{z}\right)^{2}-\left(D_{\bar{\lambda}} W_{k} M_{z}\right)^{2} M_{z^{k}}\right)
$$

must be a compact operator on L^{2}, but we have

$$
\begin{gathered}
\left(\lambda M_{z}\left(D_{\bar{\lambda}} W_{k} M_{z}\right)^{2}-\left(D_{\bar{\lambda}} W_{k} M_{z}\right)^{2} M_{z^{k}}\right) e_{n}= \\
\begin{cases}\lambda^{p(k+1)} e_{p+1} & \text { if } n=k^{2} p-k-1 \text { for some } \mathrm{p} \in \mathbb{Z} \\
-\lambda^{p(k+1)-1} e_{p} & \text { if } n=k^{2} p-2 k-1 \text { for some } \mathrm{p} \in \mathbb{Z} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

which contradicts the compactness of this operator. Thus, the set $(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right),|\lambda|=1$ is not an algebra.

Further, the set is not self-adjoint since $T^{*} \notin(k, \lambda)-E S T O\left(L^{2}\right)$. We have $T^{*}=M_{\bar{z}} W_{k}{ }^{*} D_{\lambda}+$ K^{*} and simple computations yield that $\left(\lambda M_{z}\left(M_{\bar{z}} W_{k}{ }^{*} D_{\lambda}\right)-\left(M_{\bar{z}} W_{k}{ }^{*} D_{\lambda}\right) M_{z^{k}}\right) e_{n}=\bar{\lambda}^{n-1} e_{k n}-$ $\bar{\lambda}^{n+k} e_{k n+k^{2}-1}$ for each $n \in \mathbb{Z}$. This helps to provide that $\left(\lambda M_{z} T^{*}-T^{*} M_{z^{k}}\right)$ is a non-compact operator on L^{2}.

We now attempt to investigate the condition which ensures that the product of two essentially generalized λ-slant Toeplitz operators is again an essentially generalized λ-slant Toeplitz operator.

Theorem 2.5. If $T_{1}, T_{2} \in(k, \lambda)-E S T O\left(L^{2}\right)$, then $T_{1} T_{2} \in(k, \lambda)-E S T O\left(L^{2}\right)$ if and only if $T_{1} M_{z^{k}} T_{2}-$ $\lambda T_{1} M_{z} T_{2} \in \mathcal{K}$.

Proof. Let $T_{1}, T_{2} \in(k, \lambda)-E S T O\left(L^{2}\right)$. Then,

$$
\lambda M_{z}\left(T_{1} T_{2}\right)-\left(T_{1} T_{2}\right) M_{z^{k}}=\left(T_{1} M_{z^{k}} T_{2}-T_{1} T_{2} M_{z^{k}}\right)(\bmod \mathcal{K})=\left(T_{1} M_{z^{k}} T_{2}-\lambda T_{1} M_{z} T_{2}\right)(\bmod \mathcal{K})
$$

Hence the result.
Q.E.D.

Once we put $\lambda=1$, we can draw the conclusion that the product of two $k^{\text {th }}$-order essentially slant Toeplitz operators is again a $k^{t h}$-order essentially slant Toeplitz operator if and only if $T_{1} M_{z^{k}} T_{2}=$ $T_{1} M_{z} T_{2}(\bmod \mathcal{K})$, which is also proved in [2].

For a natural number $p>1$, let $n(p)$ denotes the number of partitions of p as a sum of two natural numbers. Then, for each $1 \leq i \leq n(p)$, we have a partition of p, say, $p=m_{i}+n_{i} ; m_{i}, n_{i} \in \mathbb{N}$. The following theorem now follows without any extra efforts.

Theorem 2.6. Let $T \in(k, \lambda)-E S T O\left(L^{2}\right)$ and $p \in \mathbb{N}, p>1$. If $T^{m_{i}}, T^{n_{i}} \in(k, \lambda)-E S T O\left(L^{2}\right)$ and $p=m_{i}+n_{i} ; m_{i}, n_{i} \in \mathbb{N}$ for $1 \leq i \leq n(p)$, then the following are equivalent.

1. $T^{p} \in(k, \lambda)-E S T O\left(L^{2}\right)$.
2. $T^{m_{i}} M_{z^{k}} T^{n_{i}}=\lambda T^{m_{i}} M_{z} T^{n_{i}}(\bmod \mathcal{K})$.
3. $T^{n_{i}} M_{z^{k}} T^{m_{i}}=\lambda T^{n_{i}} M_{z} T^{m_{i}}(\bmod \mathcal{K})$.

Making use of the fact that for $\varphi, \psi \in L^{\infty}, M_{\varphi} M_{\psi}=M_{\varphi \psi}$ and using recursively the definition of an essentially generalized λ-slant Toeplitz operator, we obtain the following theorem.

Theorem 2.7. Let k_{1}, k_{2} (both ≥ 2) be integers and λ be a complex number. If $T_{1} \in\left(k_{1}, \lambda\right)$ $\operatorname{ESTO}\left(L^{2}\right)$ and $T_{2} \in\left(k_{2}, \lambda\right)-\operatorname{ESTO}\left(L^{2}\right)$, then the following are equivalent.

1. $T_{1} T_{2} \in\left(k_{1} k_{2}, \lambda\right)-\operatorname{ESTO}\left(L^{2}\right)$.
2. $\left(1-\lambda^{k_{1}}\right) T_{1} M_{z^{k_{1}}} T_{2} \in \mathcal{K}$.

In addition, if $\lambda \neq 0$, then (1) and (2) are equivalent to the condition $\left(1-\lambda^{k_{1}}\right) T_{1} T_{2} M_{z^{k_{1} k_{2}}} \in \mathcal{K}$.

Some immediate observations from the above theorem are:
(i) If λ is a $k_{1}^{t h}$-root of unity, then the product $T_{1} T_{2}$ of the operators $T_{1} \in\left(k_{1}, \lambda\right)-E S T O\left(L^{2}\right)$ and $T_{2} \in\left(k_{2}, \lambda\right)-\operatorname{ESTO}\left(L^{2}\right)$ is an operator in the set $\left(k_{1} k_{2}, \lambda\right)-\operatorname{ESTO}\left(L^{2}\right)$.
(ii) The product of a $k_{1}^{t h}$-order essentially slant Toeplitz operator and a $k_{2}^{t h}$-order essentially slant Toeplitz operator is an essentially slant Toeplitz operator of $\left(k_{1} k_{2}\right)^{t h}$-order.

Let us try to illustrate observation (i) in light of the following example. Let λ be a third root of unity i.e. λ is either $1, \omega$ or ω^{2}, where $\omega=\frac{-1+\sqrt{3} i}{2}$. Consider the operators T_{1} and T_{2} on L^{2} defined as $T_{1}=D_{\bar{\lambda}} W_{3} M_{z}+K$ and $T_{2}=D_{\bar{\lambda}} W M_{z}+K$, where $D_{\bar{\lambda}}, W_{3}, W\left(=W_{2}\right)$ and K are as defined in Example 2.1. Then, it is easy to see that $T_{1} \in(3, \lambda)-E S T O\left(L^{2}\right)$ and $T_{2} \in(2, \lambda)-E S T O\left(L^{2}\right)$. Now, the operators $T_{1} T_{2}$ and $T_{2} T_{1}$ are given as

$$
T_{1} T_{2} e_{n}= \begin{cases}e_{1} & \text { if } n=-1 \\ \lambda^{m-1} e_{m} & \text { if } \mathrm{n}=6 \mathrm{~m}-3 \text { for some } \mathrm{m} \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
T_{2} T_{1} e_{n}= \begin{cases}\lambda e_{1} & \text { if } n=0 \\ \lambda^{2} e_{m} & \text { if } \mathrm{n}=6 \mathrm{~m}-4 \text { for some } \mathrm{m} \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

The matrix representation of the operator $T_{1} T_{2}$ w.r.t orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is given as follows

$$
\left[\begin{array}{ccccccccccc}
& \vdots & \\
\cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & A & 0 & 0 & 0 & \oint & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & A & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 1 & \oint & 0 & 0 & A & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A & \cdots \\
& \vdots &
\end{array}\right]
$$

where A is a (3×13) matrix with all columns having zero entries except the first, seventh and thirteenth columns, which are $(1,0,0)^{t},(0, \lambda, 0)^{t}$ and $\left(0,0, \lambda^{2}\right)^{t}$ respectively. Here, $(\cdot)^{t}$ denotes the transpose of matrix (\cdot).

Similarly, one can also obtain the matrix representation of the operator $T_{2} T_{1}$. Using Theorem 2.7, we conclude that both $T_{1} T_{2}$ and $T_{2} T_{1}$ belong to the set $(6, \lambda)-E S T O\left(L^{2}\right)$.

The following theorem provides a sufficient condition so that product of any two bounded operators on L^{2} lies in the set $(k, \lambda)-E S T O\left(L^{2}\right)$.

Theorem 2.8. Let $T_{1}, T_{2} \in \mathcal{B}\left(L^{2}\right)$, then $T_{1} T_{2} \in(k, \lambda)-E S T O\left(L^{2}\right)$ if any one of the following conditions holds.

1. T_{1} is in essential commutant of M_{z} and $T_{2} \in(k, \lambda)-E S T O\left(L^{2}\right)$.
2. $T_{1} \in(k, \lambda)-E S T O\left(L^{2}\right)$ and T_{2} is in essential commutant of $M_{z^{k}}$.

Proof. Let $T_{1}, T_{2} \in \mathcal{B}\left(L^{2}\right)$ such that $T_{1} M_{z}-M_{z} T_{1} \in \mathcal{K}$. In this case, $\left(\lambda M_{z}\left(T_{1} T_{2}\right)-\left(T_{1} T_{2}\right) M_{z^{k}}\right)=$ $\left(\lambda M_{z} T_{1} T_{2}-\lambda T_{1} M_{z} T_{2}\right)(\bmod \mathcal{K})=\left(\lambda M_{z} T_{1} T_{2}-\lambda M_{z} T_{1} T_{2}\right)(\bmod \mathcal{K})=0(\bmod \mathcal{K})$. Hence, $T_{1} T_{2} \in$ $(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right)$. Similarly, we can prove the result when condition (2) holds.
Q.E.D.

Remark 2.9. If M_{φ} is a multiplication operator induced by $\varphi \in L^{\infty}$ and $T \in(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right)$, then $M_{\varphi} T$ and $T M_{\varphi}$ both belong to $(k, \lambda)-E S T O\left(L^{2}\right)$.

We end this section by obtaining a necessary condition for an essentially generalized λ-slant Toeplitz operator to be self-adjoint.
Proposition 2.10. If $T, T^{*} \in(k, \lambda)-E S T O\left(L^{2}\right)$, then $A T^{*}-T^{*} A^{*} \in \mathcal{K}$, where $A=\lambda M_{z}+M_{\bar{z}^{k}}$.
Proof. Consider $A T^{*}-T^{*} A^{*}=\left(\lambda M_{z} T^{*}-T^{*} M_{z^{k}}\right)-\left(\bar{\lambda} T^{*} M_{\bar{z}}-M_{\bar{z}^{k}} T^{*}\right)=\left(\lambda M_{z} T^{*}-T^{*} M_{z^{k}}\right)-$ $\left(\lambda M_{z} T-T M_{z^{k}}\right)^{*}$. Hence, if $T, T^{*} \in(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right)$, then $A T^{*}-T^{*} A^{*} \in \mathcal{K}$. Q.E.D.

Theorem 2.11. A necessary condition for an essentially generalized λ-slant Toeplitz operator T to be self-adjoint is that the operator $\left(\lambda M_{z}+M_{\bar{z}^{k}}\right) T$ is essentially self-adjoint.

3 Compressions

In [5], the compression of a generalized λ-slant Toeplitz operator to H^{2} has been characterized as the solution X of the operator equation $\lambda X=T_{\bar{z}} X T_{z^{k}}$. We obtain the same characterization following the approach of [10, Problem-194] and using the matrix characterization of a generalized λ-slant Toeplitz operator.
Theorem 3.1. A bounded operator A on H^{2} is the compression of a generalized λ-slant Toeplitz operator to H^{2} if and only if $\lambda A=T_{\bar{z}} A T_{z^{k}}$, where $T_{\bar{z}}$ and $T_{z^{k}}$ are Toeplitz operators on H^{2} induced by \bar{z} and z^{k} respectively.
Proof. Let A be the compression of a generalized λ-slant Toeplitz operator to H^{2}. Then, using the matrix characterization of A, we have that for each $i, j \geq 0, \lambda\left\langle A z^{j}, z^{i}\right\rangle=\left\langle T_{\bar{z}} A T_{z^{k}} z^{j}, z^{i}\right\rangle$ and hence $\lambda A=T_{\bar{z}} A T_{z^{k}}$.

Conversely, let A satisfies the given equation. Then retracing back the above steps, we obtain that $\lambda\left\langle A z^{j}, z^{i}\right\rangle=\left\langle A z^{j+k}, z^{i+1}\right\rangle$. For each non-negative integer n , consider the operator A_{n} on L^{2} given by

$$
A_{n}=\frac{1}{\lambda^{n}} S^{* n} A P S^{k n}
$$

where S denotes the bilateral shift on L^{2} and P denotes the orthogonal projection of L^{2} onto H^{2} . Clearly, $\left\|A_{n}\right\| \leq\|A\|$. For each pair (i,j) of integers, we have $\left\langle A_{n} z^{j}, z^{i}\right\rangle=\left\langle\frac{1}{\lambda^{n}} A P z^{j+k n}, z^{i+n}\right\rangle$. Then, for sufficiently large $\mathrm{n}\left(n \geq n_{0}\right.$, where n_{0} is the least integer such that $\left.j+k n_{0}, i+n_{0} \geq 0\right)$, we have that $\left|\left\langle A_{n} z^{j}, z^{i}\right\rangle\right|=\left\langle A_{n} z^{j}, z^{i}\right\rangle=\left|\frac{1}{\lambda^{n_{0}}}\left\langle A z^{j+k n_{0}}, z^{i+n_{0}}\right\rangle\right|=\left\langle A z^{j+k n_{0}}, z^{i+n_{0}}\right\rangle$.

Following the same methods and techniques as in [10], we find a bounded linear operator A_{∞} on L^{2} such that $\varphi(f, g)=\left\langle A_{\infty} f, g\right\rangle$ for all $f, g \in L^{2}$, which helps to provide that $\lim _{n \rightarrow \infty}\left\langle A_{n} f, g\right\rangle=$ $\left\langle A_{\infty} f, g\right\rangle$ for all $f, g \in L^{2}$. Lastly, it is easy to see that A_{∞} is a generalized λ-slant Toeplitz operator on L^{2} and A is its compression to H^{2}. For, if $i, j \in \mathbb{Z}$, then

$$
\left\langle A_{n} z^{j}, z^{i}\right\rangle=\frac{1}{\lambda} \lim _{n \rightarrow \infty}\left\langle\frac{1}{\lambda^{n}} S^{* n} A P S^{k n} z^{j+k}, S^{n} z^{i+1}\right\rangle=\frac{1}{\lambda}\left\langle A_{\infty} z^{j+k}, z^{i+1}\right\rangle
$$

and for $\mathrm{f}, \mathrm{g} \in H^{2}$, we have $\left\langle P A_{\infty} f, g\right\rangle=\left\langle A_{\infty} f, g\right\rangle=\lim _{n \rightarrow \infty}\left\langle A_{n} f, g\right\rangle=\langle A f, g\rangle$. Hence, we are done.
Q.E.D.

Since T_{z} is essentially unitary, the equations $\lambda Y-T_{\bar{z}} Y T_{z^{k}} \in \mathcal{K}\left(H^{2}\right)$ and $\lambda T_{z} Y-Y T_{z^{k}} \in \mathcal{K}\left(H^{2}\right)$ are equivalent, for any operator Y on H^{2}. We shall now define the counterpart of an essentially generalized λ-slant Toeplitz operator on H^{2}.

Definition 3.2. An operator Y on the space H^{2} is said to be essentially compression of a generalized λ-slant Toeplitz operator to H^{2} if it satisfies the operator equation

$$
\lambda T_{z} Y-Y T_{z^{k}} \in \mathcal{K}\left(H^{2}\right)
$$

Let (k, λ) - $\operatorname{ESTO}\left(H^{2}\right)$ denote the set of all bounded operators on H^{2} which are essentially compression of generalized λ-slant Toeplitz operators to H^{2}.

For $\varphi \in L^{\infty}$, let V_{φ} denote the compression of a $k^{t h}$-order slant Toeplitz operator U_{φ} to H^{2}. Then, one can readily observe that for each $f \in H^{2},\left(T_{z} W_{k}\right) f=\left(P U_{z^{k}}\right) f$. This implies that $\left.\left(T_{z} W_{k}\right)\right|_{H^{2}}=V_{z^{k}}=W_{k} T_{z^{k}}$.

Using this observation, it is easy to see that if T is an operator on H^{2} defined as $T=D_{\bar{\lambda}} W_{k} T_{z}+$ K, where $\lambda \in \mathbb{C}$ with $|\lambda|=1, D_{\bar{\lambda}}$ is the composition operator on H^{2} defined as $D_{\bar{\lambda}} f(z)=f(\lambda z)$ for all $f \in H^{2}$ and K is defined on H^{2} as $K e_{0}=e_{1}$ and $K e_{n}=0$ if $n \geq 1$, then $\lambda T_{z} T-T T_{z^{k}} \in \mathcal{K}\left(H^{2}\right)$. In fact, $\lambda T_{z} T-T T_{z^{k}}$ is a non-zero compact operator on H^{2}. Further, $T^{*}, T^{2} \notin(k, \lambda)-E S T O\left(H^{2}\right)$.

The following conclusions can now easily be drawn.

1. $\mathcal{K}\left(H^{2}\right)$ is a proper subset of $(k, \lambda)-E S T O\left(H^{2}\right)$.
2. $(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$ is a proper superset of the set of all compression of generalized λ-slant Toeplitz operators to H^{2}.
3. The set $(k, \lambda)-E S T O\left(H^{2}\right)$ is neither self-adjoint nor an algebra.

Utilizing the fact that for any positive integer $\mathrm{m}, \sigma\left(T_{z^{m}}\right)=\mathbb{D}$, where \mathbb{D} denotes the closed unit disc in \mathbb{C}, we have the following.

Proposition 3.3. Let $\lambda, \mu \in \mathbb{C}$ with $\lambda \neq \mu$ and $k_{1} \neq k_{2}$. Then, $\left(k_{1}, \lambda\right)-\operatorname{ESTO}\left(H^{2}\right) \cap\left(k_{2}, \mu\right)-$ $\operatorname{ESTO}\left(H^{2}\right)=\mathcal{K}\left(H^{2}\right)$, if either of the following holds.

1. $k_{1}>k_{2}$ and $|\lambda|>|\mu|$.
2. $k_{1}<k_{2}$ and $|\lambda|<|\mu|$.

Listed below are some of the properties of the set $(k, \lambda)-E S T O\left(H^{2}\right)$, which can be readily obtained by working on in a similar fashion as in the case of $(k, \lambda)-\operatorname{ESTO}\left(L^{2}\right)$.

1. The compression of every generalized λ-slant Toeplitz operator to H^{2} belongs to (k, λ) $\operatorname{ESTO}\left(H^{2}\right)$.
2. $(k, \lambda)-E S T O\left(H^{2}\right) \cap \mathcal{K}\left(H^{2}\right)=\mathcal{K}\left(H^{2}\right)$.
3. $(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$ is a norm-closed vector subspace of $\mathcal{B}\left(H^{2}\right)$.
4. For complex numbers $\lambda \neq \mu,(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right) \cap(k, \mu)-E S T O\left(H^{2}\right)=\mathcal{K}\left(H^{2}\right)$.
5. If $T_{1}, T_{2} \in(k, \lambda)-E S T O\left(H^{2}\right)$, then $T_{1} T_{2} \in(k, \lambda)-E S T O\left(H^{2}\right)$ if and only if $T_{1} T_{z^{k}} T_{2}-$ $\lambda T_{1} T_{z} T_{2} \in \mathcal{K}\left(H^{2}\right)$.
6. For integers k_{1}, k_{2} (both ≥ 2) and complex number λ, let $T_{1} \in\left(k_{1}, \lambda\right)-\operatorname{ESTO}\left(H^{2}\right), T_{2} \in$ $\left(k_{2}, \lambda\right)-\operatorname{ESTO}\left(H^{2}\right)$ and $k=k_{1} k_{2}$. Then $T_{1} T_{2} \in(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$ if and only if $\left(1-\lambda^{k_{1}}\right) T_{1} T_{z^{k_{1}}} T_{2} \in \mathcal{K}\left(H^{2}\right)$. Further, if $\lambda \neq 0$, then $T_{1} T_{2} \in(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$ if and only if $\left(1-\lambda^{k_{1}}\right) T_{1} T_{2} T_{z^{k}} \in \mathcal{K}\left(H^{2}\right)$.
7. Let $T_{1}, T_{2} \in \mathcal{B}\left(H^{2}\right)$. If T_{1} is in essential commutant of T_{z} and $T_{2} \in(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$ or, $T_{1} \in$ $(k, \lambda)-E S T O\left(H^{2}\right)$ and T_{2} is in essential commutant of $T_{z^{k}}$, then $T_{1} T_{2} \in(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$
8. If $T, T^{*} \in(k, \lambda)-E S T O\left(H^{2}\right)$, then $A T^{*}=T^{*} A^{*}\left(\bmod \mathcal{K}\left(H^{2}\right)\right)$, where $A=\lambda T_{z}+T_{\bar{z}^{k}}$.
9. A necessary condition for an operator $\mathrm{T} \in(k, \lambda)-E S T O\left(H^{2}\right)$ to be self-adjoint is that the operator $\left(\lambda T_{z}+T_{\bar{z}^{k}}\right) T$ is essentially self-adjoint.

Next we move on to find if essentially compression of a generalized λ-slant Toeplitz operator to H^{2} is an invertible operator. The answer is in negative as is justified in the following theorem.
Theorem 3.4. The set $(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right), \lambda \neq 0$ doesn't contain any invertible operator.
Proof. Let $T \in(k, \lambda)-E S T O\left(H^{2}\right)$ be a Fredholm operator of index n. Then, $\lambda T_{z} T=T T_{z^{k}}+K$, for some compact operator K on H^{2}. The index of the operator $\lambda T_{z} T$ is $\mathrm{n}-1$, while the index of $T T_{z^{k}}+K$ is $\mathrm{n}-\mathrm{k}$. This implies that $k=1$ which is a contradiction. Hence the set $(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$ contains no Fredholm operator and in particular no invertible operator.
Q.E.D.

Using the fact that the commutator of a Toeplitz operator $T_{\varphi}, \varphi \in L^{\infty}$ and $T_{z^{m}}$ (where m is any positive integer) is a compact operator on H^{2}, we obtain the following result (analogous to remark 2.9).

Theorem 3.5. Let $A \in(k, \lambda)-E S T O\left(H^{2}\right)$ and T_{φ} be a Toeplitz operator on H^{2} induced by $\varphi \in L^{\infty}$, then $T_{\varphi} A$ and $A T_{\varphi}$ both belong to the set $(k, \lambda)-E S T O\left(H^{2}\right)$.

Proof. Let $A \in(k, \lambda)-E S T O\left(H^{2}\right)$. Consider

$$
\lambda T_{z}\left(T_{\varphi} A\right)-\left(T_{\varphi} A\right) T_{z^{k}}=\left(T_{\varphi}\left(\lambda T_{z} A-A T_{z^{k}}\right)\right)\left(\bmod \mathcal{K}\left(H^{2}\right)\right)=0\left(\bmod \mathcal{K}\left(H^{2}\right)\right)
$$

This implies that $T_{\varphi} A \in(k, \lambda)-E S T O\left(H^{2}\right)$. Working on similar lines, we can easily prove that $A T_{\varphi}$ belongs to the set $(k, \lambda)-E S T O\left(H^{2}\right)$.
Q.E.D.

Before we proceed further, let us recall the following definitions.
Definition 3.6. (see [4]) A bounded linear operator T on H^{2} is essentially Toeplitz if $T_{z}^{*} T T_{z}-T \in$ $\mathcal{K}\left(H^{2}\right)$. The set of all essentially Toeplitz operators is denoted by essToep.

Definition 3.7. (see [7]) A bounded linear operator T on H^{2} is essentially λ-Toeplitz if $T_{z}^{*} T T_{z}-$ $\lambda T \in \mathcal{K}\left(H^{2}\right)$. The set of all essentially λ - Toeplitz operators is denoted by essToep λ_{λ}.

In the following theorem, we describe the products of essentially Toeplitz operators and essentially $\frac{1}{\lambda}$-Toeplitz operators with the operators in the class $(k, \lambda)-E S T O\left(H^{2}\right)$. It is interesting to obtain that, in either case, the product turns out to be an operator in the class $(k, \lambda)-E S T O\left(H^{2}\right)$.

Theorem 3.8. For a complex number λ and integer $k \geq 2$, we have the following.

1. (essToep) $\left((k, \lambda)-E S T O\left(H^{2}\right)\right) \subseteq(k, \lambda)-E S T O\left(H^{2}\right)$.
2. $\left(\right.$ essToep $\left._{\frac{1}{\lambda}}\right)\left(\left(k, \lambda^{2}\right)-\operatorname{ESTO}\left(H^{2}\right)\right) \subseteq(k, \lambda)-\operatorname{ESTO}\left(H^{2}\right)$.

Proof. We just prove (2). Let $T_{1} \in \operatorname{essToep}_{\frac{1}{\lambda}}$ and $T_{2} \in\left(k, \lambda^{2}\right)-E S T O\left(H^{2}\right)$. Then, $T_{z} T_{1}-\lambda T_{1} T_{z} \in$ $\mathcal{K}\left(H^{2}\right)$ and $\lambda^{2} T_{z} T_{2}-T_{2} T_{z^{k}} \in \mathcal{K}\left(H^{2}\right)$. Hence,

$$
\begin{aligned}
\lambda T_{z}\left(T_{1} T_{2}\right)-\left(T_{1} T_{2}\right) T_{z^{k}} & =\lambda^{2} T_{1} T_{z} T_{2}-T_{1} T_{2} T_{z^{k}} \quad\left(\bmod \mathcal{K}\left(H^{2}\right)\right) \\
& \left.=T_{1}\left(\lambda^{2} T_{z} T_{2}-T_{2} T_{z^{k}}\right)\right)\left(\bmod \mathcal{K}\left(H^{2}\right)\right) \\
& =0\left(\bmod \mathcal{K}\left(H^{2}\right)\right) .
\end{aligned}
$$

Therefore, $\left(\operatorname{essToep}_{\frac{1}{\lambda}}\right)\left(\left(k, \lambda^{2}\right)-E S T O\left(H^{2}\right)\right) \subseteq(k, \lambda)-E S T O\left(H^{2}\right)$.
Q.E.D.

Corollary 3.9. (essToep) $\left(\mathrm{k}-E S T O\left(H^{2}\right)\right) \subseteq \mathrm{k}-E S T O\left(H^{2}\right)$.
Remark 3.10. It is worth mentioning here that reversing the order of composition of operators T_{1} and T_{2} in Theorem 3.8 (1) yields no change in the result, i.e. $\left((k, \lambda)-E S T O\left(H^{2}\right)\right)(e s s T o e p)$ $\subseteq(k, \lambda)-E S T O\left(H^{2}\right)$. However, in case (2), we obtain that the product $T_{2} T_{1}$ of the operators $T_{2} \in\left(\left(k, \lambda^{2}\right)-E S T O\left(H^{2}\right)\right)$ and $T_{1} \in\left(\right.$ essToep $\left._{\frac{1}{\lambda}}\right)$ belongs to the set $(k, \lambda)-E S T O\left(H^{2}\right)$ if and only if λ is a $(k-1)^{t h}$-root of unity or $T_{2} T_{z^{k}} T_{1} \in \mathcal{K}\left(H^{2}\right)$.

Acknowledgement. The UGC research grant (F.No.8-4(194)/2015(MRP/ NRCB)) to the first author and DST-INSPIRE research grant (DST/INSPIRE/03/2014/000442 upgraded to No. DST/AORC-IF/UPGRD/IF140222) to the second author are gratefully acknowledged.

References

[1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on H^{2}, Math. Nachr. 278, No. 4, 347-355, 2005.
[2] S.C. Arora and J. Bhola, Essentially slant Toeplitz operators, Banach J. Math. Anal., Iran, 3(2009), No. 2, 1-8.
[3] Rubén A. Martínez-Avendaño, A generalization of Hankel operators, J. Func. Anal., 190, 2002, 418-446.
[4] José Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621-630.
[5] Gopal Datt and Ritu Aggarwal, A generalization of λ-slant Toeplitz operators, Tbilisi Mathematics Journal, Vol. 9(1), 221-229, 2016.
[6] Gopal Datt and Ritu Aggarwal, Essentially (λ, μ)-Hankel operators, Functional Analysis, Approximation and Computation, 6(1), (2014), 35-40.
[7] Gopal Datt and Ritu Aggarwal, On some generalization of Toeplitz operator via operator equations, General Mathematics, Vol. 21(2), 2013, 57-69.
[8] Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1952.
[9] T. Goodman, C. Micchelli and J. Ward, Spectral radius formula for subdivision operators, Recent advances in wavelet analysis, ed. L. Schumaker and G. Webb, Academic Press, 1994, 335-360.
[10] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
[11] M.C. Ho, Properties of slant Toeplitz operators, Indiana Univ. Math. J., 45(3), 1996, 843-862.
[12] S. Sun, On the operator equation $U^{*} T U=\lambda T$, Kexue Tongbao (English ed.), 29, 1984, 298299.
[13] L. Villemoes, Wavelet analysis of refinement equations, SIAMJ Math. Analysis, 25, 1994, 1433-1460.

